Download Free The Diversity Of Neutron Stars Nearby Thermally Emitting Neutron Stars And The Compact Central Objects In Supernova Remnants Book in PDF and EPUB Free Download. You can read online The Diversity Of Neutron Stars Nearby Thermally Emitting Neutron Stars And The Compact Central Objects In Supernova Remnants and write the review.

Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.
Written by a leading expert, this monograph presents recent developments on supernova remnants, with the inclusion of results from various satellites and ground-based instruments. The book details the physics and evolution of supernova remnants, as well as provides an up-to-date account of recent multiwavelength results. Supernova remnants provide vital clues about the actual supernova explosions from X-ray spectroscopy of the supernova material, or from the imprints the progenitors had on the ambient medium supernova remnants are interacting with - all of which the author discusses in great detail. The way in which supernova remnants are classified, is reviewed and explained early on. A chapter is devoted to the related topic of pulsar wind nebulae, and neutron stars associated with supernova remnants. The book also includes an extended part on radiative processes, collisionless shock physics and cosmic-ray acceleration, making this book applicable to a wide variety of astronomical sub-disciplines. With its coverage of fundamental physics and careful review of the state of the field, the book serves as both textbook for advanced students and as reference for researchers in the field.
This authoritative textbook - the second volume of a comprehensive three-volume course on theoretical astrophysics - deals with stellar physics. Designed to help graduate students and researchers develop an understanding of the key physical processes governing stars and stellar systems, it teaches the fundamentals, and then builds on them to give the reader an in-depth understanding of advanced topics. The book's modular design allows the chapters to be approached individually, yet seamless transitions create a coherent and connected whole. It can be used alone or in conjunction with Volume I, which covers a wide range of astrophysical processes, and the forthcoming Volume III, on galaxies and cosmology. After reviewing the key observational results and nomenclature used in stellar astronomy, the book develops a solid understanding of central concepts including stellar structure and evolution, the physics of stellar remnants, pulsars, binary stars, the sun and planetary systems, interstellar medium and globular clusters. Throughout, the reader's comprehension is developed and tested with more than seventy-five exercises. This indispensable volume provides graduate students with a self-contained introduction to stellar physics, and will allow them to master the material sufficiently to read and engage in research with heightened understanding.
This book reports on the extraordinary observation of TeV gamma rays from the Crab Pulsar, the most energetic light ever detected from this type of object. It presents detailed information on the painstaking analysis of the unprecedentedly large dataset from the MAGIC telescopes, and comprehensively discusses the implications of pulsed TeV gamma rays for state-of-the-art pulsar emission models. Using these results, the book subsequently explores new testing methodologies for Lorentz Invariance Violation, in terms of a wavelength-dependent speed of light. The book also covers an updated search for Very-High-Energy (VHE), >100 GeV, emissions from millisecond pulsars using the Large Area Telescope on board the Fermi satellite, as well as a study on the promising Pulsar Wind Nebula candidate PSR J0631. The observation of VHE gamma rays is essential to studying the non-thermal sources of radiation in our Universe. Rotating neutron stars, also known as pulsars, are an extreme source class known to emit VHE gamma rays. However, to date only two pulsars have been detected with emissions above 100 GeV, and our understanding of their emission mechanism is still lacking.
This book is a collation of the contributions presented at a major conference on isolated neutron stars held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years. The great variety of isolated neutron stars, from pulsars to magnetars, is well covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.
This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, in degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.
This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 “Exploring fundamental physics with compact stars” (NewCompStar).
The New Astronomy is a rich kaleidoscope of the finest images of planets, stars, galaxies and the universe. It presents a host of new information, gathered from right across the spectrum: spanning the colourful universe from X-rays, through ultraviolet, visible and infrared, and out to the radio waves. Nigel Henbest and Michael Marten take us on a journey in which we view the variety of the cosmos and its contents through every available window. The first edition of The New Astronomy created a sensation, as no accessible description of modern astronomy had attempted to assemble images from so wide a range. For the new edition there are almost 200 entirely new pictures, selected from the Hubble Space Telescope and orbiting X-ray detectors, as well as from very large telescopes based at Mauna Kea, Hawaii and in the Canary Islands. The new science includes intriguing images from gravitational lenses, which are natural telescopes created by black holes inside other galaxies, and a full description of the latest images of the background radiation of the universe. From the nearby planets to, quite literally, the edge of the observable universe, this book is a brilliant synthesis of all that is new in the astronomy of today. Each object described is displayed in a variety of wavelengths. The non-technical text explains the science behind the objects, and it has been substantially re-written for this second edition.
Neutron stars, whether isolated or in a binary system, display a varied and complex phenomenology, often accompanied by extreme variability of many time scales, which takes the form of pulsations due to the object rotation, quasi-periodicities associated to accretion of matter, and explosions due to matter accreted on the surface or to starquakes of highly magnetized objects. This book gives an overview of the current observational and theoretical standpoint in the research on the physics under the extreme conditions that neutron stars naturally provide. The six chapters explore three physical regions of a neutron star: the space around it, where accretion and pulsar companions allow testing of general relativity its surface, where millisecond pulsation and X-ray burts provide clues about general relativistic effects and the equation of state of neutron matter its interior, of course, inaccessible to direct observations, can nevertheless, be probed with all observational parameters related to neutron star variability.