Download Free The Digital Shopfloor Industrial Automation In The Industry 40 Era Book in PDF and EPUB Free Download. You can read online The Digital Shopfloor Industrial Automation In The Industry 40 Era and write the review.

In today’s competitive global environment, manufacturers are offered with unprecedented opportunities to build hyper-efficient and highly flexible plants, towards meeting variable market demand, while at the same time supporting new production models such as make-to-order (MTO), configure-to-order (CTO) and engineer-to-order (ETO). During the last couple of years, the digital transformation of industrial processes is propelled by the emergence and rise of the fourth industrial revolution (Industry4.0). The latter is based on the extensive deployment of Cyber-Physical Production Systems (CPPS) and Industrial Internet of Things (IIoT) technologies in the manufacturing shopfloor, as well as on the seamless and timely exchange of digital information across supply chain participants. The benefits of Industry 4.0 have been already proven in the scope of pilot and production deployments in a number of different use cases including flexibility in automation, predictive maintenance, zero defect manufacturing and more. Despite early implementations and proof-of-concepts, CPPS/IIoT deployments are still in their infancy for a number of reasons, including:• Manufacturers’ poor awareness about digital manufacturing solutions and their business value potential, as well as the lack of relevant internal CPPS/IIoT knowledge.• The high costs that are associated with the deployment, maintenance and operation of CPPS systems in the manufacturing shopfloors, which are particularly challenging in the case of SME (Small Medium Enterprises) manufacturers that lack the equity capital needed to invest in Industry 4.0.• The time needed to implement CPPS/IIoT and the lack of a smooth and proven migration path from existing OT solutions.• The uncertainty over the business benefits and impacts of IIoT and CPPS technologies, including the lack of proven methods for the techno-economic evaluation of Industry4.0 systems. • Manufacturers’ increased reliance on external integrators, consultants and vendors. • The absence of a well-developed value chain needed to sustain the acceptance of these new technologies for digital automation.In order to alleviate these challenges, three European Commission funded projects (namely H2020 FAR-EDGE (http://www.far-edge.eu/), H2020 DAEDALUS (http://daedalus.iec61499.eu) and H2020 AUTOWARE (http://www.autoware-eu.org/)) have recently joined forces towards a “Digital Shopfloor Alliance”. The Alliance aims at providing leading edge and standards based digital automation solutions, along with guidelines and blueprints for their effective deployment, validation and evaluation. The present book provides a comprehensive description of some of the most representative solutions that offered by these three projects, along with the ways these solutions can be combined in order to achieve multiplier effects and maximize the benefits of their use. The presented solutions include standards-based digital automation solutions, following different deployment paradigms, such as cloud and edge computing systems. Moreover, they also comprise a rich set of digital simulation solutions, which are explored in conjunction with the H2020 MAYA project (http://www.maya-euproject.com/). The latter facilitate the testing and evaluation of what-if scenarios at low risk and cost, but also without disrupting shopfloor operations. As already outlined, beyond leading edge scientific and technological development solutions, the book comprises a rich set of complementary assets that are indispensable to the successful adoption of IIoT/CPPS in the shopfloor. The book is structured in three parts as follows: • The first part of the book is devoted to digital automation platforms. Following an introduction to Industry 4.0 in general and digital automation platforms in particular, this part presents the digital automation platforms of the FAR-EDGE, AUTOWARE and DAEDALUS projects. • The second part of the book focuses on the presentation of digital simulation and digital twins’ functionalities. These include information about the models that underpin digital twins, as well as the simulators that enable experimentation with these processes over these digital models. • The third part of the book provides information about complementary assets and supporting services that boost the adoption of digital automation functionalities in the Industry4.0 era. Training services, migration services and ecosystem building services are discussed based on the results of the three projects of the Digital Shopfloor Alliance. The target audience of the book includes:• Researchers in the areas of Digital Manufacturing and more specifically in the areas of digital automation and simulation, who wish to be updated about latest Industry4.0 developments in these areas.• Manufacturers, with an interest in the next generation of digital automation solutions based on Cyber-Physical systems.• Practitioners and providers of Industrial IoT solutions, which are interested in the implementation of use cases in automation, simulation and supply chain management.• Managers wishing to understand technologies and solutions that underpin Industry4.0, along with representative applications in the shopfloor and across the supply chain.
The Tactile Internet will change the landscape of communication by introducing a new paradigm that enables the remote delivery of haptic data. This book answers the many questions surrounding the Tactile Internet, including its reference architecture and adapted compression methods for conveying haptic information. It also describes the key enablers for deploying the applications of the Tactile Internet. As an antecedent technology, the IoT is tackled, explaining the differences and similarities between the Tactile Internet, the Internet of Things and the Internet of Everything. The essentials of teleoperation systems are summarized and the challenges that face this paradigm in its implementation and deployment are also discussed. Finally, a teleoperation case study demonstrating an application of the Tactile Internet is investigated to demonstrate its functionalities, architecture and performance.
Focusing on the design and implementation of computer-based automatic machine tools, David F. Noble challenges the idea that technology has a life of its own. Technology has been both a convenient scapegoat and a universal solution, serving to disarm critics, divert attention, depoliticize debate, and dismiss discussion of the fundamental antagonisms and inequalities that continue to beset America. This provocative study of the postwar automation of the American metal-working industry—the heart of a modern industrial economy—explains how dominant institutions like the great corporations, the universities, and the military, along with the ideology of modern engineering shape, the development of technology. Noble shows how the system of "numerical control," perfected at the Massachusetts Institute of Technology (MIT) and put into general industrial use, was chosen over competing systems for reasons other than the technical and economic superiority typically advanced by its promoters. Numerical control took shape at an MIT laboratory rather than in a manufacturing setting, and a market for the new technology was created, not by cost-minded producers, but instead by the U. S. Air Force. Competing methods, equally promising, were rejected because they left control of production in the hands of skilled workers, rather than in those of management or programmers. Noble demonstrates that engineering design is influenced by political, economic, managerial, and sociological considerations, while the deployment of equipment—illustrated by a detailed case history of a large General Electric plant in Massachusetts—can become entangled with such matters as labor classification, shop organization, managerial responsibility, and patterns of authority. In its examination of technology as a human, social process, Forces of Production is a path-breaking contribution to the understanding of this phenomenon in American society.
This book relates research being implemented in three main research areas: secure connectivity and intelligent systems, real-time analytics and manufacturing knowledge and virtual manufacturing. Manufacturing SMEs and MNCs want to see how Industry 4.0 is implemented. On the other hand, groundbreaking research on this topic is constantly growing. For the aforesaid reason, the Singapore Agency for Science, Technology and Research (A*STAR), has created the model factory initiative. In the model factory, manufacturers, technology providers and the broader industry can (i) learn how I4.0 technologies are implemented on real-world manufacturing use-cases, (ii) test process improvements enabled by such technologies at the model factory facility, without disrupting their own operations, (iii) co-develop technology solutions and (iv) support the adoption of solutions at their everyday industrial operation. The book constitutes a clear base ground not only for inspiration of researchers, but also for companies who will want to adopt smart manufacturing approaches coming from Industry 4.0 in their pathway to digitization.
Focusing on the design and implementation of computer-based automatic machine tools, David F. Noble challenges the idea that technology has a life of its own. Technology has been both a convenient scapegoat and a universal solution, serving to disarm critics, divert attention, depoliticize debate, and dismiss discussion of the fundamental antagonisms and inequalities that continue to beset America. This provocative study of the postwar automation of the American metal-working industry—the heart of a modern industrial economy—explains how dominant institutions like the great corporations, the universities, and the military, along with the ideology of modern engineering shape, the development of technology. Noble shows how the system of "numerical control," perfected at the Massachusetts Institute of Technology (MIT) and put into general industrial use, was chosen over competing systems for reasons other than the technical and economic superiority typically advanced by its promoters. Numerical control took shape at an MIT laboratory rather than in a manufacturing setting, and a market for the new technology was created, not by cost-minded producers, but instead by the U. S. Air Force. Competing methods, equally promising, were rejected because they left control of production in the hands of skilled workers, rather than in those of management or programmers. Noble demonstrates that engineering design is influenced by political, economic, managerial, and sociological considerations, while the deployment of equipment—illustrated by a detailed case history of a large General Electric plant in Massachusetts—can become entangled with such matters as labor classification, shop organization, managerial responsibility, and patterns of authority. In its examination of technology as a human, social process, Forces of Production is a path-breaking contribution to the understanding of this phenomenon in American society.
This title teaches beginners the basics of automation, and it is also intended as a guide to teachers and trainers who are introducing the topic.
This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies.
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.
In the years following World War II the health and well-being of the nation was of primary concern to the British government. The essays in this collection examine the relationship between health and stress in post-war Britain through a series of carefully connected case studies.