Download Free The Development Of Stable Protein Formulations Book in PDF and EPUB Free Download. You can read online The Development Of Stable Protein Formulations and write the review.

Recombinant proteins and polypeptides continue to be the most important class of biotechnology-derived agents in today's pharmaceutical industry. Over the past few years, our fundamental understanding of how proteins degrade and how stabilizing agents work has made it possible to approach formulation of protein pharmaceuticals from a much more rational point of view. This book describes the current level of understanding of protein instability and the strategies for stabilizing proteins under a variety of stressful conditions.
This title is intended to assist pharmaceutical scientists in the development of stable protein formulations during the early stages of the product development process, providing a comprehensive review of mechanisms and causes of protein instability in formulation development, coverage of accelerated stability testing methods and relevant analytica
Leading scientists offer detailed profiles of ten protein drugs currently in development. The case histories of these important new compounds are described from the perspective of their formulation, characterization, and stability. This ready reference also features recent data and an abundance of previously unpublished information. The in-depth coverage includes a highly useful compendium of degradation sites occurring in over 70 proteins. An invaluable aid in the rapid identification of potential `hot spots' in proteins, this accessible compilation allows for inspection of the protein's primary structure and preparation of a hydroflex plot.
A real-world guide to the production and manufacturing of biopharmaceuticals While much has been written about the science of biopharmaceuticals, there is a need for practical, up-to-date information on key issues at all stages of developing and manufacturing commercially viable biopharmaceutical drug products. This book helps fill the gap in the field, examining all areas of biopharmaceuticals manufacturing, from development and formulation to production and packaging. Written by a group of experts from industry and academia, the book focuses on real-world methods for maintaining product integrity throughout the commercialization process, clearly explaining the fundamentals and essential pathways for all development stages. Coverage includes: Research and early development phase appropriate approaches for ensuring product stability Development of commercially viable formulations for liquid and lyophilized dosage forms Optimal storage, packaging, and shipping methods Case studies relating to therapeutic monoclonal antibodies, recombinant proteins, and plasma fractions Useful analysis of successful and failed products Formulation and Process Development Strategies for Manufacturing Biopharma-ceuticals is an essential resource for scientists and engineers in the pharmaceutical and biotech industries, for government and regulatory agencies, and for anyone with an interest in the latest developments in the field.
Teaches future and current drug developers the latest innovations in drug formulation design and optimization This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation. Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life; preclinical formulation assessment of new chemical entities; and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations; accessing pharmacokinetics of various dosage forms; physical characterization techniques to assess amorphous nature; novel formulations for protein oral dosage; and more. -Provides information that is essential for the drug development effort -Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals -Describes current approaches in early pre-formulation to achieve the best in vivo results -Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies -Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.
A comprehensive source of information about modern drying technologies that uniquely focus on the processing of pharmaceuticals and biologicals Drying technologies are an indispensable production step in the pharmaceutical industry and the knowledge of drying technologies and applications is absolutely essential for current drug product development. This book focuses on the application of various drying technologies to the processing of pharmaceuticals and biologicals. It offers a complete overview of innovative as well as standard drying technologies, and addresses the issues of why drying is required and what the critical considerations are for implementing this process operation during drug product development. Drying Technologies for Biotechnology and Pharmaceutical Applications discusses the state-of-the-art of established drying technologies like freeze- and spray- drying and highlights limitations that need to be overcome to achieve the future state of pharmaceutical manufacturing. The book also describes promising next generation drying technologies, which are currently used in fields outside of pharmaceuticals, and how they can be implemented and adapted for future use in the pharmaceutical industry. In addition, it deals with the generation of synergistic effects (e.g. by applying process analytical technology) and provides an outlook toward future developments. -Presents a full technical overview of well established standard drying methods alongside various other drying technologies, possible improvements, limitations, synergies, and future directions -Outlines different drying technologies from an application-oriented point of view and with consideration of real world challenges in the field of drug product development -Edited by renowned experts from the pharmaceutical industry and assembled by leading experts from industry and academia Drying Technologies for Biotechnology and Pharmaceutical Applications is an important book for pharma engineers, process engineers, chemical engineers, and others who work in related industries.
This book provides a comprehensive examination of the newest biopharmaceutical drugs. Among the drugs discussed are ones in the categories of monoclonal antibodies for in-vivo use, cytokines, growth factors, enzymes, immunomodulators, thrombolytics, and immonotherapies including vaccines. Additionally, the volume examines new and emerging technologies, and contains a review of the Human Genome Project.
In this era of biotechnology there have been many books covering the fundamentals of recombinant DNA technology and protein chemistry. However, not many sources are available for the pharmaceutical develop ment scientist and other personnel responsible for the commercialization of the finished dosage forms of these new biopharmaceuticals and other products from biotechnology. This text will help to fill this gap. Once active biopharmaceutical molecules are candidates for clinical trial investigation and subsequent commercialization, a number of other activities must take place while research and development on these molecules continues. The active ingredient itself must be formulated into a finished dosage form that can be conveniently used by health care professionals and patients. Properties of the biopharmaceutical molecule must be clearly understood so that the appropriate finished product formulation can be developed. Finished product formulation development includes not only the chemical formulation, but also the packaging system, the manufacturing process, and appropriate control strategies to assure such good manufacturing practice attributes as safety, identity, strength, purity, and quality.
The rapid advances in recombinant DNA technology and the increasing availability of peptides and proteins with therapeutic potential are a challenge for pharmaceutical scientists who have to formulate these compounds as drug products. Pharmaceutical Formulation Development of Peptides and Proteins, Second Edition discusses the development of therapeutic peptides and proteins, from the production of active compounds via basic pre-formulation and formulation to the registration of the final product. Providing integrated solutions, this book discusses: The synthesis of peptides and the biotechnological production of proteins through recombinant DNA technology The physicochemical characteristics and stability of peptides and proteins The formulation of proteins as suspensions, solutions, and (mostly freeze-dried) solids The opportunities and challenges of non-parenteral delivery of peptides and proteins Risk factors, specifically the development of an unwanted immune response A simulation approach to describe the fate of peptides and proteins upon administration to a biological system The documentation required to register a protein-based drug Scientists in the pharmaceutical industry and academia as well as postgraduate students in pharmaceutical science will find this a valuable resource.
This work covers advances in the interactions of proteins with their solvent environment and provides fundamental physical information useful for the application of proteins in biotechnology and industrial processes. It discusses in detail structure, dynamic and thermodynamic aspects of protein hydration, as well as proteins in aqueous and organic solvents as they relate to protein function, stability and folding.