Download Free The Design Synthesis And Application To Asymmetric Catalysis Of Chiral Transition Metal Cyclopentadienyl Complexes Book in PDF and EPUB Free Download. You can read online The Design Synthesis And Application To Asymmetric Catalysis Of Chiral Transition Metal Cyclopentadienyl Complexes and write the review.

Edited by two of the experts in the field, the central aim is to show organic chemists working in process development that enantioselective catalysis is suitable for the large-scale production of enantioenriched intermediates. In so doing, it is equally a source of information and inspiration for academic research, and, with its contribution by Noble prizewinner W. S. Knowles, will also heighten the status of industrial catalyst specialists working in the exciting field of enantioselective catalysis. Some 25 contributions from top industrial researchers around the world present case studies on the development of the widest possible range of large-scale enantioselective processes, featuring stereoselective production processes of fine-chemicals, agrochemicals and pharmaceuticals. Clearly structured according to the nature of the task, this handbook adopts a problem-driven approach such that readers can easily find how colleagues have dealt with a similar situation.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbrev iated as Top Organomet Chem and cited as a journal.
Asymmetric synthesis remains a challenge to practicing scientistsas the need for enantiomerically pure or enriched compoundscontinues to increase. Over the last decade, a large amount ofliterature has been published in this field. Principles andApplications of Asymmetric Synthesis consolidates and evaluates themost useful methodologies into a one-volume resource for theconvenience of practicing scientists and students. Authored by internationally renowned scientists in the field, thisreliable reference covers more than 450 reactions and includesimportant stoichiometric as well as catalytic asymmetric reactions.The first chapter reviews the basic principles, commonnomenclature, and analytical methods, and the remainder of the bookis organized according to reaction type. The text examines suchtopics as: Carbon-carbon bond formations involving carbonyls, enamines,imines, and enolates Asymmetric C-O bond formations including epoxidation,dihydroxylation, and aminohydroxylation Asymmetric synthesis using the Diels-Alder reaction and othercyclizations Applications to the total synthesis of natural products Use of enzymes in asymmetric synthesis Practicing chemists in the pharmaceutical, fine chemical, andagricultural professions as well as graduate students will findthat Principles and Applications of Asymmetric Synthesis affordscomprehensive and current coverage.
This book meets the long-felt need for a reference on ferrocenes with the focus on catalysis. It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral materials as well as drug intermediates synthesized from them. Written by the "who's who" of ferrocene catalysis, this is a guide to the design of new ferrocene ligands and synthesis of chiral synthetic intermediates, and will thus be useful for organic, catalytic and synthetic chemists working in academia, industrial research or process development.
Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis. Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation. Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands. Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.
with contributions by numerous experts
Asymmetric C-H direct functionalization reactions are one of the most active and fascinating areas of research in organic chemistry due to their significance in the construction of molecular complexity without pre-activation, and the step economy and atom economy features in potential synthetic application. Distinguishing the reactivity among numerous C–H bonds in one single molecule represents one of the most challenging issues in organic synthesis and requires precise reaction design. As such, this field is now receiving increasing attention from researchers. This book provides the first comprehensive review of this field, summarizing the origin, mechanism, scope and applications of the asymmetric C-H bond functionalization reaction. It covers organocatalytic reactions and transition-metal-catalyzed reactions, as well as asymmetric C-H functionalization reactions not described in other books. Written by a leading expert in this field, the book is ideal for postgraduates and researchers working in organic synthesis, catalysis, and organometallic chemistry.
Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.
Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.