Download Free The Design Of Novel Pattern Reconfigurable Antennas For Mobile Networks Book in PDF and EPUB Free Download. You can read online The Design Of Novel Pattern Reconfigurable Antennas For Mobile Networks and write the review.

MULTIFUNCTIONAL ANTENNAS AND ARRAYS FOR WIRELESS COMMUNICATION SYSTEMS Offers an up-to-date discussion of multifunctional antennas and arrays for wireless communication systems Multifunctional Antennas and Arrays for Wireless Communication Systems is a comprehensive reference on state-of-the-art reconfigurable antennas and 4G/5G communication antennas. The book gives a unique perspective while giving a comprehensive overview of the following topics: Frequency reconfigurable antennas Pattern reconfigurable antennas Polarization reconfigurable antennas Reconfigurable antennas using Liquid Metal, Piezoelectric, and RF MEMS MIMO and 4G/5G wireless communication antennas Metamaterials and metasurfaces in reconfigurable antennas Multifunctional antennas for user equipments (UEs) Defense related antennas and applications Flat panel phased array antennas The book is a valuable resource for the practicing engineer as well as for those within the research field. As wireless communications continuously evolves, more and more functionally will be required, and thus multifunctional antennas and RF systems will be necessary. These multifunctional antennas will require a degree of reconfigurability, and this book discusses various methods which enable this. The main topics of frequency, pattern, and polarization reconfigurability is first discussed. Methods utilizing unique materials and devices, both real and artificial are discussed. The book also delves into 4G/5G antennas as it relates to MIMO, and millimeter-wave phased arrays. Finally, there is a section on defense related multifunctional RF antenna systems.
This book presents state-of-the-art trends in reconfigurable active and passive planar antennas and their applications in wireless communication systems operating in the frequency band 5-6 GHz. Due to various key features such as multifunction antenna design, compactness, planar nature, and low cost, these technologies are becoming popular for current and future wireless applications. This book discusses different novel antenna designs and their working principles in detail. The modern and future wireless systems require wideband antennas to accommodate various channels in a single band or in separate bands. The carrier aggregation (CA) has been introduced in the modern wireless systems such as LTE-advanced systems and 5G./6G. In CA, a device can use several channels for transmission and reception. The used channels can exist in the same frequency band (intra-band CA) or in distinct bands (inter-band CA). To accommodate more channels, more bandwidth is required within the operating band. For portable devices, circularly polarized (CP) antennas are more advantageous over linearly polarized antennas since in CP antennas, there is low risk of misalignment and, hence encountering interference. Circularly polarized antenna also provides higher link reliability for the portable devices. To provide high data rates, more bandwidth is needed to accommodate more channels. Various multifunction, compact, and wideband antennas for plethora of applications are addressed in detail in this book. The scope of developing reconfigurable active antennas for application in beam switching, beam steering, wireless charging, security systems, etc., is described. This book concludes by giving glimpses of antenna requirements for future wireless communication systems.
The 2nd International Conference on Artificial Intelligence and Speech Technology (AIST2020) was organized by Indira Gandhi Delhi Technical University for Women, Delhi, India on November 19–20, 2020. AIST2020 is dedicated to cutting-edge research that addresses the scientific needs of academic researchers and industrial professionals to explore new horizons of knowledge related to Artificial Intelligence and Speech Technologies. AIST2020 includes high-quality paper presentation sessions revealing the latest research findings, and engaging participant discussions. The main focus is on novel contributions which would open new opportunities for providing better and low-cost solutions for the betterment of society. These include the use of new AI-based approaches like Deep Learning, CNN, RNN, GAN, and others in various Speech related issues like speech synthesis, speech recognition, etc.
Novel Algorithms and Techniques in Telecommunications and Networking includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology and Automation, Telecommunications and Networking. Novel Algorithms and Techniques in Telecommunications and Networking includes selected papers form the conference proceedings of the International Conference on Telecommunications and Networking (TeNe 08) which was part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2008).
This book discusses antenna designs for handheld devices as well as base stations. The book serves as a reference and a handy guide for graduate students and PhD students involved in the field of millimeter wave antenna design. It also gives insights to designers and practicing engineers who are actively engaged in design of antennas for future 5G devices. It offers an in-depth study, performance analysis and extensive characterization of novel antennas for 5G applications. The reader will learn about basic design methodology and techniques to develop antennas for 5G applications including concepts of path loss compensation, co-design of commercial 4G antennas with millimeter wave 5G antennas and antennas used in phase array and pattern diversity modules. Practical examples included in the book will help readers to build high performance antennas for 5G subsystems/systems using low cost technology. Key Features Provides simple design methodology of different antennas for handheld devices as well as base stations for 5G applications. Concept of path loss compensation introduced. Co-design of commercial 4G antennas with millimetre wave 5G antennas presented. Comparison of phased array versus pattern diversity modules discussed in detail. Fabrication and Measurement challenges at mmWaves and Research Avenues in antenna designs for 5G and beyond presented. Shiban Kishen Koul is an emeritus professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He served as the chairman of Astra Microwave Products Limited, Hyderabad from 2009-2018. He is a Life Fellow of the Institution of Electrical and Electronics Engineering (IEEE), USA, a Fellow of the Indian National Academy of Engineering (INAE), and a Fellow of the Institution of Electronics and Telecommunication Engineers (IETE). Karthikeya G S worked as an assistant professor in Visvesvaraya technological university from 2013 to 2016 and completed his PhD from the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi in Dec.2019. He is a member of IEEE-Antenna Propagation Society and Antenna Test and Measurement society.
Fundamentals of 5G Mobile Networks provides an overview of the key features of the 5th Generation (5G) mobile networks, discussing the motivation for 5G and the main challenges in developing this new technology. This book provides an insight into the key areas of research that will define this new system technology paving the path towards future research and development. The book is multi-disciplinary in nature, and aims to cover a whole host of intertwined subjects that will predominantly influence the 5G landscape, including the future Internet, cloud computing, small cells and self-organizing networks (SONs), cooperative communications, dynamic spectrum management and cognitive radio, Broadcast-Broadband convergence , 5G security challenge, and green RF. This book aims to be the first of its kind towards painting a holistic perspective on 5G Mobile, allowing 5G stakeholders to capture key technology trends on different layering domains and to identify potential inter-disciplinary design aspects that need to be solved in order to deliver a 5G Mobile system that operates seamlessly.
The field of antenna engineering has been advancing at a remarkable pace to support modern communication systems. Recently, significant progress has been made in the development of new antennas and techniques targeted for applications in medical, defense, health care, communication, etc. The motivation of this project is to present cutting-edge research materials in the field of antennas for modern wireless communication.
This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of operation, impedance, and polarization. These models help designers understand reconfigurable antenna structures and enhance their functionality since they transform antennas from bulky devices into mathematical and software accessible models. The use of graphs facilitates the software control and cognition ability of reconfigurable antennas while optimizing their performance. This lecture also discusses the reduction of redundancy, complexity and reliability of reconfigurable antennas and reconfigurable antenna arrays. The full analysis of these parameters allows a better reconfigurable antenna implementation in wireless and space communications platforms. The use of graph models to reduce the complexity while preserving the reliability of reconfigurable antennas allow a better incorporation in applications such as cognitive radio, MIMO, satellite communications, and personal communication systems. A swifter response time is achieved with less cost and losses. This lecture is written for individuals who wish to venture into the field of reconfigurable antennas, with a little prior experience in this area, and learn how graph rules and theory, mainly used in the field of computer science, networking, and control systems can be applied to electromagnetic structures. This lecture will walk the reader through a design and analysis process of reconfigurable antennas using graph models with a practical and theoretical outlook.
This book discusses antenna designs for handheld devices as well as base stations. The book serves as a reference and a handy guide for graduate students and PhD students involved in the field of millimeter wave antenna design. It also gives insights to designers and practicing engineers who are actively engaged in design of antennas for future 5G devices. It offers an in-depth study, performance analysis and extensive characterization of novel antennas for 5G applications. The reader will learn about basic design methodology and techniques to develop antennas for 5G applications including concepts of path loss compensation, co-design of commercial 4G antennas with millimeter wave 5G antennas and antennas used in phase array and pattern diversity modules. Practical examples included in the book will help readers to build high performance antennas for 5G subsystems/systems using low cost technology. Key Features Provides simple design methodology of different antennas for handheld devices as well as base stations for 5G applications. Concept of path loss compensation introduced. Co-design of commercial 4G antennas with millimetre wave 5G antennas presented. Comparison of phased array versus pattern diversity modules discussed in detail. Fabrication and Measurement challenges at mmWaves and Research Avenues in antenna designs for 5G and beyond presented. Shiban Kishen Koul is an emeritus professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He served as the chairman of Astra Microwave Products Limited, Hyderabad from 2009-2018. He is a Life Fellow of the Institution of Electrical and Electronics Engineering (IEEE), USA, a Fellow of the Indian National Academy of Engineering (INAE), and a Fellow of the Institution of Electronics and Telecommunication Engineers (IETE). Karthikeya G S worked as an assistant professor in Visvesvaraya technological university from 2013 to 2016 and completed his PhD from the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi in Dec.2019. He is a member of IEEE-Antenna Propagation Society and Antenna Test and Measurement society.
This one-of-a-kind new resource presents cognitive radio from an antenna design perspective and introduces the concept of cognitive radio as a protocol that benefits from under-utilized regions of the spectrum. This book covers topics that govern the operation of a cognitive radio and discusses the use of reconfigurable antennas, reconfigurable filtennas, and MIMO antennas for cognitive radio. The analysis and design of different antenna systems are presented, compared and evaluated. New approaches to improve spectrum efficiency are explored by demonstrating how to design software controlled cognitive radio antenna systems. This new resource shows how to communicate using either interweave or underlay cognitive radio and demonstrates the benefits of designing appropriate sensing and communicating antennas. The first part of the book introduces the basic concept of cognitive radio and discusses the difference between cognitive radio and software defined radio from the RF system 's perspective. The second part of the book discusses the main antenna design requirements, procedures and challenges for cognitive radio. The third part of the book introduces new trends in cognitive radio implementation such as the implementation of MIMO antennas on cognitive radio, the use of machine learning techniques to optimize the performance of a cognitive radio environment, and the implementation of cognitive radar and cognitive radio in space.