Download Free The Design Of An Autonomous Mobile Robot Built To Investigate Behaviour Based Control Book in PDF and EPUB Free Download. You can read online The Design Of An Autonomous Mobile Robot Built To Investigate Behaviour Based Control and write the review.

The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.
Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. - Clearly and authoritatively presents mobile robot concepts - Richly illustrated throughout with figures and examples - Key concepts demonstrated with a host of experimental and simulation examples - No prior knowledge of the subject is required; each chapter commences with an introduction and background
An introduction to the science and practice of autonomous robots that reviews over 300 current systems and examines the underlying technology. Autonomous robots are intelligent machines capable of performing tasks in the world by themselves, without explicit human control. Examples range from autonomous helicopters to Roomba, the robot vacuum cleaner. In this book, George Bekey offers an introduction to the science and practice of autonomous robots that can be used both in the classroom and as a reference for industry professionals. He surveys the hardware implementations of more than 300 current systems, reviews some of their application areas, and examines the underlying technology, including control, architectures, learning, manipulation, grasping, navigation, and mapping. Living systems can be considered the prototypes of autonomous systems, and Bekey explores the biological inspiration that forms the basis of many recent developments in robotics. He also discusses robot control issues and the design of control architectures. After an overview of the field that introduces some of its fundamental concepts, the book presents background material on hardware, control (from both biological and engineering perspectives), software architecture, and robot intelligence. It then examines a broad range of implementations and applications, including locomotion (wheeled, legged, flying, swimming, and crawling robots), manipulation (both arms and hands), localization, navigation, and mapping. The many case studies and specific applications include robots built for research, industry, and the military, among them underwater robotic vehicles, walking machines with four, six, and eight legs, and the famous humanoid robots Cog, Kismet, ASIMO, and QRIO. The book concludes with reflections on the future of robotics—the potential benefits as well as the possible dangers that may arise from large numbers of increasingly intelligent and autonomous robots.
A revolutionary new framework that draws on insights from ecology for the design and analysis of long-duration robots Robots are increasingly leaving the confines of laboratories, warehouses, and manufacturing facilities, venturing into agriculture and other settings where they must operate in uncertain conditions over long timescales. This multidisciplinary book draws on the principles of ecology to show how robots can take full advantage of the environments they inhabit, including as sources of energy. Magnus Egerstedt introduces a revolutionary new design paradigm—robot ecology—that makes it possible to achieve long-duration autonomy while avoiding catastrophic failures. Central to ecology is the idea that the richness of an organism’s behavior is a function of the environmental constraints imposed by its habitat. Moving beyond traditional strategies that focus on optimal policies for making robots achieve targeted tasks, Egerstedt explores how to use survivability constraints to produce both effective and provably safe robot behaviors. He blends discussions of ecological principles with the development of control barrier functions as a formal approach to constraint-based control design, and provides an in-depth look at the design of the SlothBot, a slow and energy-efficient robot used for environmental monitoring and conservation. Visionary in scope, Robot Ecology presents a comprehensive and unified methodology for designing robots that can function over long durations in diverse natural environments.
Designing Autonomous Agents provides a summary and overview of the radically different architectures that have been developed over the past few years for organizing robots. These architectures have led to major breakthroughs that promise to revolutionize the study of autonomous agents and perhaps artificial intelligence in general. The new architectures emphasize more direct coupling of sensing to action, distributedness and decentralization, dynamic interaction with the environment, and intrinsic mechanisms to cope with limited resources and incomplete knowledge. The research discussed here encompasses such important ideas as emergent functionality, task-level decomposition, and reasoning methods such as analogical representations and visual operations that make the task of perception more realistic. Contents A Biological Perspective on Autonomous Agent Design, Randall D. Beer, Hillel J. Chiel, Leon S. Sterling * Elephants Don't Play Chess, Rodney A. Brooks * What Are Plans For? Philip E. Agre and David Chapman * Action and Planning in Embedded Agents, Leslie Pack Kaelbling and Stanley J. Rosenschein * Situated Agents Can Have Goals, Pattie Maes * Exploiting Analogical Representations, Luc Steels * Internalized Plans: A Representation for Action Resources, David W. Payton * Integrating Behavioral, Perceptual, and World Knowledge in Reactive Navigation, Ronald C. Arkin * Symbol Grounding via a Hybrid Architecture in an Autonomous Assembly System, Chris Malcolm and Tim Smithers * Animal Behavior as a Paradigm for Developing Robot Autonomy, Tracy L. Anderson and Max Donath
Foreword by Michael Arbib This introduction to the principles, design, and practice of intelligent behavior-based autonomous robotic systems is the first true survey of this robotics field. The author presents the tools and techniques central to the development of this class of systems in a clear and thorough manner. Following a discussion of the relevant biological and psychological models of behavior, he covers the use of knowledge and learning in autonomous robots, behavior-based and hybrid robot architectures, modular perception, robot colonies, and future trends in robot intelligence. The text throughout refers to actual implemented robots and includes many pictures and descriptions of hardware, making it clear that these are not abstract simulations, but real machines capable of perception, cognition, and action.
Mobile robotics has until now focused on issues like design of controllers and robot hardware. It is now ready to embrace theoretical methods from dynamical systems theory, statistics and system identification to produce a formalized approach based on quantitative analyses and computer models of the interaction between robot, task and environment. This book is a step towards a theoretical understanding of the operation of autonomous mobile robots. It presents cutting-edge research on the application of chaos theory, parametric and non-parametric statistics and dynamical systems theory in this field. Practical examples and case studies show how robot behaviour can be logged, analysed, interpreted and modelled, aiding design of controllers, analysis of agent behaviour and verification of results. As the first book to apply advanced scientific methods to mobile robots it will interest researchers, lecturers and post-graduate students in robotics, artificial intelligence and cognitive science.
Proceedings of the Artificial Neural Networks in Engineering Conference, November 2002, St. Louis, Missouri. This annual conference publication presents refereed papers covering the following categories and their applications in the engineering domain: Neural Networks, Complex Systems, Evolutionary Programming, Data Mining, Fuzzy Logic, Adaptive Control, Pattern Recognition and Smart Engineering System Design. These papers are intended to provide a forum for researchers in the field to exchange ideas on smart engineering system design.
With research continuing to expand and develop, the marketplace for sensors and instrumentation remains one of the most significant for the United Kingdom, the European Union, and the economies of major developed nations. Sensors and Their Applications XI discusses novel research in the field of sensors and transducers, and provides valuable insight into new and topical applications of the technology. The book records the breadth and quality of the field and acts as a topical record of work in sensors and their applications. It will serve as an invaluable reference for physicists, engineers, and chemists working in this area of technology for many years to come.