Download Free The Design Of A Multiprocessor Development System Book in PDF and EPUB Free Download. You can read online The Design Of A Multiprocessor Development System and write the review.

The purpose of this book is to evaluate strategies for future system design in multiprocessor system-on-chip (MPSoC) architectures. Both hardware design and integration of new development tools will be discussed. Novel trends in MPSoC design, combined with reconfigurable architectures are a main topic of concern. The main emphasis is on architectures, design-flow, tool-development, applications and system design.
The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new embedded multicore era, the toughest task is the development of code to support more sophisticated systems. This book provides embedded engineers with solid grounding in the skills required to develop software targeting multicore processors. Within the text, the author undertakes an in-depth exploration of performance analysis, and a close-up look at the tools of the trade. Both general multicore design principles and processor-specific optimization techniques are revealed. Detailed coverage of critical issues for multicore employment within embedded systems is provided, including the Threading Development Cycle, with discussions of analysis, design, development, debugging, and performance tuning of threaded applications. Software development techniques engendering optimal mobility and energy efficiency are highlighted through multiple case studies, which provide practical “how-to advice on implementing the latest multicore processors. Finally, future trends are discussed, including terascale, speculative multithreading, transactional memory, interconnects, and the software-specific implications of these looming architectural developments. This is the only book to explain software optimization for embedded multi-core systems Helpful tips, tricks and design secrets from an Intel programming expert, with detailed examples using the popular X86 architecture Covers hot topics, including ultramobile devices, low-power designs, Pthreads vs. OpenMP, and heterogeneous cores
Modern system-on-chip (SoC) design shows a clear trend toward integration of multiple processor cores on a single chip. Designing a multiprocessor system-on-chip (MPSOC) requires an understanding of the various design styles and techniques used in the multiprocessor. Understanding the application area of the MPSOC is also critical to making proper tradeoffs and design decisions. Multiprocessor Systems-on-Chips covers both design techniques and applications for MPSOCs. Design topics include multiprocessor architectures, processors, operating systems, compilers, methodologies, and synthesis algorithms, and application areas covered include telecommunications and multimedia. The majority of the chapters were collected from presentations made at the International Workshop on Application-Specific Multi-Processor SoC held over the past two years. The workshop assembled internationally recognized speakers on the range of topics relevant to MPSOCs. After having refined their material at the workshop, the speakers are now writing chapters and the editors are fashioning them into a unified book by making connections between chapters and developing common terminology. *Examines several different architectures and the constraints imposed on them *Discusses scheduling, real-time operating systems, and compilers *Analyzes design trade-off and decisions in telecommunications and multimedia applications
Foreword -- Foreword to the First Printing -- Preface -- Chapter 1 -- Introduction -- Chapter 2 -- Message Switching Layer -- Chapter 3 -- Deadlock, Livelock, and Starvation -- Chapter 4 -- Routing Algorithms -- Chapter 5 -- CollectiveCommunicationSupport -- Chapter 6 -- Fault-Tolerant Routing -- Chapter 7 -- Network Architectures -- Chapter 8 -- Messaging Layer Software -- Chapter 9 -- Performance Evaluation -- Appendix A -- Formal Definitions for Deadlock Avoidance -- Appendix B -- Acronyms -- References -- Index.
The less-experienced engineer will be able to apply Ball's advice to everyday projects and challenges immediately with amazing results. In this new edition, the author has expanded the section on debug to include avoiding common hardware, software and interrupt problems. Other new features include an expanded section on system integration and debug to address the capabilities of more recent emulators and debuggers, a section about combination microcontroller/PLD devices, and expanded information on industry standard embedded platforms. - Covers all 'species' of embedded system chips rather than specific hardware - Learn how to cope with 'real world' problems - Design embedded systems products that are reliable and work in real applications
Revised and updated with improvements conceived in parallel programming courses, The Art of Multiprocessor Programming is an authoritative guide to multicore programming. It introduces a higher level set of software development skills than that needed for efficient single-core programming. This book provides comprehensive coverage of the new principles, algorithms, and tools necessary for effective multiprocessor programming. Students and professionals alike will benefit from thorough coverage of key multiprocessor programming issues. - This revised edition incorporates much-demanded updates throughout the book, based on feedback and corrections reported from classrooms since 2008 - Learn the fundamentals of programming multiple threads accessing shared memory - Explore mainstream concurrent data structures and the key elements of their design, as well as synchronization techniques from simple locks to transactional memory systems - Visit the companion site and download source code, example Java programs, and materials to support and enhance the learning experience
Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed and manageable power consumption makes it likely that the next generation of embedded processing systems will include hundreds of cores, while being increasingly programmable, blending processors and configurable hardware in a power-efficient manner. Multi-Core Embedded Systems presents a variety of perspectives that elucidate the technical challenges associated with such increased integration of homogeneous (processors) and heterogeneous multiple cores. It offers an analysis that industry engineers and professionals will need to understand the physical details of both software and hardware in embedded architectures, as well as their limitations and potential for future growth. Discusses the available programming models spread across different abstraction levels The book begins with an overview of the evolution of multiprocessor architectures for embedded applications and discusses techniques for autonomous power management of system-level parameters. It addresses the use of existing open-source (and free) tools originating from several application domains—such as traffic modeling, graph theory, parallel computing and network simulation. In addition, the authors cover other important topics associated with multi-core embedded systems, such as: Architectures and interconnects Embedded design methodologies Mapping of applications
This book describes the various tradeoffs systems designers face when designing embedded memory. Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test. The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.
Over the past several years, embedded systems have emerged as an integral though unseen part of many consumer, industrial, and military devices. The explosive growth of these systems has resulted in embedded computing becoming an increasingly important discipline. The need for designers of high-performance, application-specific computing systems has never been greater, and many universities and colleges in the US and worldwide are now developing advanced courses to help prepare their students for careers in embedded computing.High-Performance Embedded Computing: Architectures, Applications, and Methodologies is the first book designed to address the needs of advanced students and industry professionals. Focusing on the unique complexities of embedded system design, the book provides a detailed look at advanced topics in the field, including multiprocessors, VLIW and superscalar architectures, and power consumption. Fundamental challenges in embedded computing are described, together with design methodologies and models of computation. HPEC provides an in-depth and advanced treatment of all the components of embedded systems, with discussions of the current developments in the field and numerous examples of real-world applications. - Covers advanced topics in embedded computing, including multiprocessors, VLIW and superscalar architectures, and power consumption - Provides in-depth coverage of networks, reconfigurable systems, hardware-software co-design, security, and program analysis - Includes examples of many real-world embedded computing applications (cell phones, printers, digital video) and architectures (the Freescale Starcore, TI OMAP multiprocessor, the TI C5000 and C6000 series, and others)
Techniques for Optimizing Multiprocessor Implementations of Signal Processing Applications An indispensable component of the information age, signal processing is embedded in a variety of consumer devices, including cell phones and digital television, as well as in communication infrastructure, such as media servers and cellular base stations. Multiple programmable processors, along with custom hardware running in parallel, are needed to achieve the computation throughput required of such applications. Reviews important research in key areas related to the multiprocessor implementation of multimedia systems Embedded Multiprocessors: Scheduling and Synchronization, Second Edition presents architectures and design methodologies for parallel systems in embedded digital signal processing (DSP) applications. It discusses application modeling techniques for multimedia systems, the incorporation of interprocessor communication costs into multiprocessor scheduling decisions, and a modeling methodology (the synchronization graph) for multiprocessor system performance analysis. The book also applies the synchronization graph model to develop hardware and software optimizations that can significantly reduce the interprocessor communication overhead of a given schedule. Chronicles recent activity dealing with single-chip multiprocessors and dataflow models This edition updates the background material on existing embedded multiprocessors, including single-chip multiprocessors. It also summarizes the new research on dataflow models for signal processing that has been carried out since the publication of the first edition. Harness the power of multiprocessors This book explores the optimization of interprocessor communication and synchronization in embedded multiprocessor systems. It shows you how to design multiprocessor computer systems that are streamlined for multimedia applications.