Download Free The Design Of A Front Suspension Hub Carrier For The 1995 Formula Sae Competition Book in PDF and EPUB Free Download. You can read online The Design Of A Front Suspension Hub Carrier For The 1995 Formula Sae Competition and write the review.

This thesis details an analytical approach to an innovative suspension system design for implementation to the Formula SAE collegiate competition. It focuses specifically on design relating to geometry, mathematical modeling, energy element relationships, and computer analysis and simulation to visualize system behavior. The bond graph approach is utilized for a quarter car model to facilitate understanding of the analytical process, then applied to a comparative analysis between two transverse half car models. The second half car model contains an additional transverse linkage with a third damper, and is compared against the baseline of the first half car model without the additional linkage. The transverse third damper is an innovative design said to improve straight-line tire contact during single-sided disturbance, help mitigate the adverse effects of squat and dive, while not inhibiting the function of the anti-roll bar in cornering capability. Additional work is done investigating an optimization of suspension geometry through mathematical modeling in MATLAB of a four-bar linkage system. This code helps visualize the complex motion of the upright and calculates the wheel camber rate and variation to compare against tire data analysis to match maximum tire performance characteristics with camber angle.
The suspension system of a FSAE (Formula Society of Automotive Engineers) vehicle is a vital system with many functions that include providing vertical compliance so the wheels can follow the uneven road, maintaining the wheels in the proper steer and camber attitudes to the road surface and reacting to the control forces produced by the tires (acceleration, braking and cornering). The members that comprise the suspension are subjected to a variety of dynamic loading conditions – it is imperative that they are designed properly to ensure the safety and performance of the vehicle. The goal of this research is to develop a model for predicting the reaction forces in the suspension members based on the expected load scenarios the vehicle will undergo. This model is compared to the current FSAE vehicle system and the design process is explained. The limitations of this model are explored and future methodologies and improvement techniques are discussed.