Download Free The Design And Synthesis Of Conjugated Organic Materials For Electronic Device Applications Book in PDF and EPUB Free Download. You can read online The Design And Synthesis Of Conjugated Organic Materials For Electronic Device Applications and write the review.

Polymer Materials for Energy and Electronic Applications is among the first books to systematically describe the recent developments in polymer materials and their electronic applications. It covers the synthesis, structures, and properties of polymers, along with their composites. In addition, the book introduces, and describes, four main kinds of electronic devices based on polymers, including energy harvesting devices, energy storage devices, light-emitting devices, and electrically driving sensors. Stretchable and wearable electronics based on polymers are a particular focus and main achievement of the book that concludes with the future developments and challenges of electronic polymers and devices. - Provides a basic understanding on the structure and morphology of polymers and their electronic properties and applications - Highlights the current applications of conducting polymers on energy harvesting and storage - Introduces the emerging flexible and stretchable electronic devices - Adds a new family of fiber-shaped electronic devices
This first systematic compilation of synthesis methods for different classes of polymers describes well-tested and reproducible procedures, thus saving time, money and chemicals. Each chapter presents the latest method for a specific class of conjugated polymers with a particular emphasis on the design aspects for organo-electronic applications. In this concise and practically oriented manner, readers are introduced to the strategies of influencing and controlling the polymer properties with respect to their use in the desired device. This style of presentation quickly helps researchers in their daily lab work and prevents them from reinventing the wheel over and over again.
This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.
Providing a thorough overview of leading research from internationally-recognized contributing authors, this book describes methods for the preparation and application of redox systems for organic electronic materials like transistors, photovoltaics, and batteries. Covers bond formation and cleavage, supramolecular systems, molecular design, and synthesis and properties Addresses preparative methods, unique structural features, physical properties, and material applications of redox active p-conjugated systems Offers a useful guide for both academic and industrial chemists involved with organic electronic materials Focuses on the transition-metal-free redox systems composed of organic and organo main group compounds
This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasi one-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors. After a brief introductory chapter, the second chapter presents basic theore tical concepts and treats in detail the various models for n-conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between n-electrons and lattice displacements. For a semi-quantitative understanding of the various measure ments, electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features, the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter.
Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. - Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications - Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques - Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing
In recent years, great focus has been placed upon polymer thin films. These polymer thin films are important in many technological applications, ranging from coatings and adhesives to organic electronic devices, including sensors and detectors. Electrochemical polymerization is preferable, especially if the polymeric product is intended for use as polymer thin films, because electrogeneration allows fine control over the film thickness, an important parameter for fabrication of devices. Moreover, it was demonstrated that it is possible to modify the material properties by parameter control of the electrodeposition process. Electrochemistry is an excellent tool, not only for synthesis, but also for characterization and application of various types of materials. This book provides a timely overview of a current state of knowledge regarding the use of electropolymerization for new materials preparation, including conducting polymers and various possibilities of applications.