Download Free The Design And Properties Of Steel Castings Book in PDF and EPUB Free Download. You can read online The Design And Properties Of Steel Castings and write the review.

The Foseco Ferrous Foundryman's Handbook is a practical reference book for all those concerned with making castings in any of the commonly used alloys, by any of the usual moulding methods. International SI units are used throughout, but in almost all cases conversions to the more familiar Metric and Imperial units are given. Wherever possible, Casting Alloy Specifications include equivalent specifications for several countries as well as international specifications. Individual chapters cover the casting of light alloys, copper-based alloys, all types of cast-iron and steel. For each group of alloys, specifications and typical applications are described, together with details of melting practice, metal treatment and casting practice. Sand moulding materials, including green sand and chemically bonded sands are also included.
Mould and Core Materials for Steel Foundry covers the significant progress in the development of various types of mould and core materials for steel founding. This book is composed of 17 chapters, and begins with the presentation of the testing procedures for the materials' properties such as green and dry strengths, permeability, amount of gas evolved, shatter index together with hardness of rammed moulds. The next chapters provide the testing procedures and routine control of sand, silica, non-siliceous materials, binders, and clay bond. These topics are followed by discussions on sand preparation, shell mould, and other core materials, such as furanes. This book describes some steel foundry processes, including heat extraction, casting, and hot tear. The final chapters deal with the reconditioning and reclamation of sand, casting and scab defects, evaluation of high temperature properties, and the technical control of raw materials to ensure conformation to the specified standards.
Cast Iron Technology presents a critical review of the nature of cast irons. It discusses the types of cast iron and the general purpose of cast irons. It also presents the history of the iron founding industry. Some of the topics covered in the book are the description of liquid metal state; preparation of liquid metal; process of melting; description of cupola melting and electric melting methods; control of composition of liquid metal during preparation; description of primary cast iron solidification structures; and thermal analysis of metals to determine its quality. Solidification science and the fundamentals of heat treatment are also discussed. An in-depth analysis of the hot quenching techniques is provided. The graphitization potential of liquid iron is well presented. A chapter is devoted to microstructural features of cast iron. The book can provide useful information to iron smiths, welders, students, and researchers.
The book comprises three parts. Part 1 gives a historical description of the development of ironworking techniques since the earliest times. Part 2 is the core of the book and deals with the metallurgical basis of microstructures, with four main themes: phase diagrams, solidification processes, diffusion, and solid state phase transformations. Part 3 begins by an introduction to steel design principles. It then goes on to consider the different categories of steels, placing emphasis on their specific microstructural features. Finally, a comprehensive reference list includes several hundred pertinent articles and books. The book is the work of a single author, thus ensuring uniformity and concision. It is intended for scientists, metallurgical engineers and senior technicians in research and development laboratories, design offices and quality departments, as well as for teachers and students in universities, technical colleges and other higher education establishments.
Casting Aluminum Alloys, Second Edition, the follow up to the fall 2007 work on the structure, properties, thermal resistance, corrosion and fatigue of aluminum alloys in industrial manufacturing, discusses findings from the past decade, including sections on new casting alloys, novel casting technologies, and new methods of alloys design. The book also includes other hot topics, such as the implementation of computational technologies for the calculation of phase equilibria and thermodynamic properties of alloys, the development of software for calculation of diffusion processes in aluminum alloys, computational modeling of solidification microstructure and texture evolution of multi-component aluminum materials. In addition to changes in computational predictive abilities, there is a review of novel casting aluminum alloy compositions and properties, as well as descriptions of new casting technologies and updates to coverage on the mechanical properties of aluminum casting alloys. - Presents a discussion of thermodynamic calculations used for assessing non-equilibrium solidifications of casting aluminum alloys - Expands coverage of mathematical models for alloy mechanical properties, helping facilitate the selection of the best prospective candidate for new alloy development - Contains a new section that describes the self-consistent evaluation of phase equilibria and thermodynamic properties of aluminum alloys
Tables and general data; Sands and sand bonding systems; Coatings for moulds and cores; Light alloy castings; Copper and copper alloy castings; Iron castings; Die-castings; Steel castings; Feeding of castings; Computer modelling of solidification of castings, the SOLSTAR system; Filtration of castings; Principal Foseco products.
The rate of growth of stainless steel has outpaced that of other metals and alloys, and by 2010 may surpass aluminum as the second most widely used metal after carbon steel. The 2007 world production of stainless steel was approximately 30,000,000 tons and has nearly doubled in the last ten years. This growth is occurring at the same time that the production of stainless steel continues to become more consolidated. One result of this is a more widespread need to understand stainless steel with fewer resources to provide that information. The concurrent technical evolution in stainless steel and increasing volatility of raw material prices has made it more important for the engineers and designers who use stainless steel to make sound technical judgments about which stainless steels to use and how to use them.
Directional Solidification of Steel Castings summarizes the results of a large number of investigations, mostly scientific in character, on the directional solidification of steel castings. The influence of design on the technical possibilities of producing casting in the foundry is examined. Diagrams, simple basic rules, and formulae are provided, along with many practical examples. This book is comprised of 16 chapters and begins with an introduction to the technical and psychological aspects of steel casting before turning to a discussion of the influence of shape and dimensions on the time it takes for castings to solidify. The thermal gradient, feeder heads, and cavities in steel castings are then considered. In particular, the effect of the thermal gradient on solidification and feeding range are examined. Methods for increasing the thermal gradient in the casting are described, including the use of mold heating pads, breaker cores or Washburn cores; external cooling (iron chills); cooling fins; internal chills; and exothermic pads. Cavities in steel castings which are commonly mistaken for true shrinkage cavities are also analyzed. This monograph is particularly suitable for foundry managers, foremen, technicians, casting designers, and students.