Download Free The Design And Investigation Of Bimetallic Ruthenium Complexes Exhibiting Proton Coupled Intramolecular Electron Transfer Book in PDF and EPUB Free Download. You can read online The Design And Investigation Of Bimetallic Ruthenium Complexes Exhibiting Proton Coupled Intramolecular Electron Transfer and write the review.

Energy production and storage are central problems for our time. In principle, abundant energy is available from the sun to run the earth in a sustainable way. Solar energy can be directly harnessed by agricultural and photovoltaic means, but the sheer scale of the energy demand poses severe challenges, for example any major competition between biomass production and food production would simply transfer scarcity from energy to food. Indirect use of solar energy in the form of wind looks also promising, especially for those regions not blessed with abundant sunlight. Other modes such as tidal and wave energy may well become important niche players. Inorganic chemistry plays a decisive role in the development of new energy technologies and this Volume covers some promising modes of alternative energy production and storage that minimize the atmospheric burden of fossil-derived carbon monoxide. No one production or storage mode is likely to dominate, at least at first, and numerous possibilities need to be explored to compare their technical feasibility and economics. This provides the context for a broad exploration of novel ideas that we are likely to see in future years as the field expands. This Volume covers a wide range of topics, such as: - Water splitting, only water is a sufficiently cheap and abundant electron source for global exploitation; - Energy conversion by photosynthesis; - Molecular catalysts for water splitting; - Thermochemical water splitting; - Photocatalytic hydrogen production; - Artificial photosynthesis, progress of the Swedish Consortium; - Hydrogen economy; - Reduction of carbon dioxide to useful fuels; - Conversion of methane to methanol; - Dye sensitized solar cells; - Photoinitiated electron transfer in fuel cells; - Proton exchange membranes for fuel cells; - Intermediate temperature solid oxide fuel cells; - Direct Ethanol fuel cells; - Molecular catalysis for fuel cells; - Enzymes and microbes in fuel cells; - Li-Ion batteries; - Magic Angle Spinning NMR studies of battery materials; Supercapacitors and electrode materials. About EIC Books The Encyclopedia of Inorganic Chemistry (EIC) has proved to be one of the defining standards in inorganic chemistry, and most chemistry libraries around the world have access either to the first or second print edition, or to the online version. Many readers, however, prefer to have more concise thematic volumes, targeted to their specific area of interest. This feedback from EIC readers has encouraged the Editors to plan a series of EIC Books, focusing on topics of current interest. They will appear on a regular basis, and will feature leading scholars in their fields. Like the Encyclopedia, EIC Books aim to provide both the starting research student and the confirmed research worker with a critical distillation of the leading concepts in inorganic and bioinorganic chemistry, and provide a structured entry into the fields covered. This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set. This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.
The latest edition of the leading forum in chemical physics Edited by Nobel Prize winner Ilya Prigogine and renowned authority Stuart A. Rice. The Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest. This stand-alone, special topics volume reports recent advances in electron-transfer research, with significant, up-to-date chapters by internationally recognized researchers. Volume 123 collects innovative papers on "Transition Path Sampling," "Dynamics of Chemical Reactions and Chaos," "The Role of Self Similarity in Renormalization Group Theory," and several other related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.
"Catalysis is truly an interdisciplinary field to which chemists, biologists, physicists, and engineers have made seminal contributions. This book aims to address the notably diverse topic of transition-metal catalysis in a single volume. The first half of the book is dedicated to the discrete and atomically precise metal complexes for homogeneous catalysis. Bimetallic, organometallic, and coordination complexes of early, late, and post-transition metals are described. Catalytic hydrogenation, oxidation, and coupling reactions are presented. The second half of the book focuses on three distinct types of nanomaterials: (1) zero- valent metallic nanoparticles, (2) titanium dioxide semiconductors, and (3) the porous coordination polymer known as the metal-organic framework. The chapters illustrate how deeply catalysis is influenced by other disciplines (e.g., coordination chemistry, bioinorganic chemistry, organometallic chemistry, computational chemistry, organic synthesis, photochemistry, materials science, environmental chemistry, green chemistry, and renewable energy). Advancements in these areas fuel the rapid growth of catalysis science. This book allows readers to reach a high-level of understanding in catalysis by learning from the perspectives of active practitioners. Unlike a textbook that provides a systematic, comprehensive, and historical education on the general topics of catalysis, this book offers critical case studies on select topics. Substantial emphasis is placed on the structural and fundamental properties that dictate catalyst performance, enabling readers to quickly understand and apply knowledge from cutting-edge studies and applications detailed within. This book can be utilized as a handbook, a textbook or textbook supplement, or a reference to guide future work"--
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal
30 years after its discovery as an antitumor agent, cisplatin represents today one of the most successful drugs in chemotherapy. This book is intended to reminisce this event, to take inventory, and to point out new lines of development in this field. Divided in 6 sections and 22 chapters, the book provides an up-to-date account on topics such as - the chemistry and biochemistry of cisplatin, - the clinical status of Pt anticancer drugs, - the impact of cisplatin on inorganic and coordination chemistry, - new developments in drug design, testing and delivery. It also includes a chapter describing the historical development of the discovery of cisplatin. The ultimate question - How does cisplatin kill a cell? - is yet to be answered, but there are now new links suggesting how Pt binding to DNA may trigger a cascade of cellular reactions that eventually result in apoptosis. p53 and a series of damage recognition proteins of the HMG-domain family appear to be involved. The book addresses the problem of mutagenicity of Pt drugs and raises the question of the possible relevance of the minor DNA adducts, e.g. of interstrand cross-links, and the possible use of trans-(NH3)2Pt(II)-modified oligonucleotides in antisense and antigene strategies. Our present understanding of reactions of cisplatin with DNA is based upon numerous model studies (from isolated model nucleobases to short DNA fragments) and application of a large body of spectroscopic and other physico-chemical techniques. Thanks to these efforts there is presently no other metal ion whose reactions with nucleic acids are better understood than Pt. In a series of chapters, basic studies on the interactions of Pt electrophiles with nucleobases, oligonucleotides, DNA, amino acids, peptides and proteins are reported, which use, among others, sophisticated NMR techniques or X-ray crystallography, to get remarkable understanding of details on such reactions. Reactivity of cisplatin, once bound to DNA and formerly believed to be inert enough to stay, is an emerging phenomenon. It has (not yet) widely been studied but is potentially extremely important. Medicinal bioinorganic chemistry - the role of metal compounds in medicine - has received an enormous boost from cisplatin, and so has bioinorganic chemistry as a whole. There is hardly a better example than cisplatin to demonstrate what bioinorganic chemistry is all about: The marriage between classic inorganic (coordination) chemistry and the other life sciences - medicine, pharmacy, biology, biochemistry. Cisplatin has left its mark also on areas that are generally considered largely inorganic. The subject of mixed-valance Pt compounds is an example: From the sleeping beauty it made its way to the headlines of scientific journals, thanks to a class of novel Pt antitumor agents, the so-called "platinum pyrimidine blues". In the aftermath diplatinum (III) compounds were recognized and studies in large numbers, and now an organometalic chemistry of these diplatinum (III) species is beginning to emerge. The final section of the book is concerned with new developments such as novel di- and trinuclear Pt(II) drugs with DNA binding properties different from those of cisplatin, with orally active Pt(IV) drugs which are presently in clinical studies, and with attempts to modify combinatorial chemistry in such a way that it may become applicable to fast screening of Pt antitumor drugs. The potential of including computational methods in solving questions of Pt-DNA interactions is critically dealt with in the concluding chapter.
Focusing on practical applications, the author provides a balanced introduction to the many possible technological uses of metal complexes. Coverage includes the transition metals, lanthanide and actinide complexes, metal porphyrins, and many other complexes. This volume meets the needs of students and scientists in inorganic chemistry, chemical physics, and solid-state physics.