Download Free The Design And Implementation Of Massively Parallel Knowledge Representation And Reasoning Systems Book in PDF and EPUB Free Download. You can read online The Design And Implementation Of Massively Parallel Knowledge Representation And Reasoning Systems and write the review.

The third in an informal series of books about parallel processing for Artificial Intelligence, this volume is based on the assumption that the computational demands of many AI tasks can be better served by parallel architectures than by the currently popular workstations. However, no assumption is made about the kind of parallelism to be used. Transputers, Connection Machines, farms of workstations, Cellular Neural Networks, Crays, and other hardware paradigms of parallelism are used by the authors of this collection.The papers arise from the areas of parallel knowledge representation, neural modeling, parallel non-monotonic reasoning, search and partitioning, constraint satisfaction, theorem proving, parallel decision trees, parallel programming languages and low-level computer vision. The final paper is an experience report about applications of massive parallelism which can be said to capture the spirit of a whole period of computing history.This volume provides the reader with a snapshot of the state of the art in Parallel Processing for Artificial Intelligence.
This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2015, held in Buenos Aires, Argentina, in July 2015, associated with IJCAI 2015, the 24th International Joint Conference on Artificial Intelligence. The 9 revised full papers presented were carefully reviewed and selected from 10 submissions. The papers feature current research involved in the development and application of graph-based knowledge representation formalisms and reasoning techniques. They address the following topics: argumentation; conceptual graphs; RDF; and representations of constraint satisfaction problems.
When it comes to robotics and bioinformatics, the Holy Grail everyone is seeking is how to dovetail logic-based inference and statistical machine learning. This volume offers some possible solutions to this eternal problem. Edited with flair and sensitivity by Hammer and Hitzler, the book contains state-of-the-art contributions in neural-symbolic integration, covering `loose' coupling by means of structure kernels or recursive models as well as `strong' coupling of logic and neural networks.
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 36 (thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 36 reports theses submitted in 1991, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing