Download Free The Democratization Of Artificial Intelligence Book in PDF and EPUB Free Download. You can read online The Democratization Of Artificial Intelligence and write the review.

After a long time of neglect, Artificial Intelligence is once again at the center of most of our political, economic, and socio-cultural debates. Recent advances in the field of Artifical Neural Networks have led to a renaissance of dystopian and utopian speculations on an AI-rendered future. Algorithmic technologies are deployed for identifying potential terrorists through vast surveillance networks, for producing sentencing guidelines and recidivism risk profiles in criminal justice systems, for demographic and psychographic targeting of bodies for advertising or propaganda, and more generally for automating the analysis of language, text, and images. Against this background, the aim of this book is to discuss the heterogenous conditions, implications, and effects of modern AI and Internet technologies in terms of their political dimension: What does it mean to critically investigate efforts of net politics in the age of machine learning algorithms?
Artificial intelligence (AI) stands out as a transformational technology of the digital age. Its practical applications are growing very rapidly. One of the chief reasons AI applications are attaining prominence, is in its design to learn continuously, from real-world use and experience, and its capability to improve its performance. It is no wonder that the applications of AI span from complex high-technology equipment manufacturing to personalized exclusive recommendations to end-users. Many deployments of AI software, given its continuous learning need, require computation platforms that are resource intense, and have sustained connectivity and perpetual power through central electrical grid. In order to harvest the benefits of AI revolution to all of humanity, traditional AI software development paradigms must be upgraded to function effectively in environments that have resource constraints, small form factor computational devices with limited power, devices with intermittent or no connectivity and/or powered by non-perpetual source or battery power. The aim this book is to prepare current and future software engineering teams with the skills and tools to fully utilize AI capabilities in resource-constrained devices. The book introduces essential AI concepts from the perspectives of full-scale software development with emphasis on creating niche Blue Ocean small form factored computational environment products.
A wake-up call for America to create a new framework for democratizing data. Public data are foundational to our democratic system. People need consistently high-quality information from trustworthy sources. In the new economy, wealth is generated by access to data; government's job is to democratize the data playing field. Yet data produced by the American government are getting worse and costing more. In Democratizing Our Data, Julia Lane argues that good data are essential for democracy. Her book is a wake-up call to America to fix its broken public data system.
This book provides a manifesto to data democracy. After reading the chapters of this book, you are informed and suitably warned! You are already part of the data republic, and you (and all of us) need to ensure that our data fall in the right hands. Everything you click, buy, swipe, try, sell, drive, or fly is a data point. But who owns the data? At this point, not you! You do not even have access to most of it. The next best empire of our planet is one who owns and controls the world's best dataset. If you consume or create data, if you are a citizen of the data republic (willingly or grudgingly), and if you are interested in making a decision or finding the truth through data-driven analysis, this book is for you. A group of experts, academics, data science researchers, and industry practitioners gathered to write this manifesto about data democracy. - The future of the data republic, life within a data democracy, and our digital freedoms. - An in-depth analysis of open science, open data, open source software, and their future challenges. - A comprehensive review of data democracy's implications within domains such as: healthcare, space exploration, earth sciences, business, and psychology. - The democratization of Artificial Intelligence (AI), and data issues such as: bias, imbalance, context, and knowledge extraction. - A systematic review of AI methods applied to software engineering problems.
Learn how Artificial Intelligence (AI) is being applied in the fashion industry. With an application focused approach, this book provides real-world examples, breaks down technical jargon for non-technical readers, and provides an educational resource for fashion professionals. The book investigates the ways in which AI is impacting every part of the fashion value chain starting with product discovery and working backwards to manufacturing. Artificial Intelligence for Fashion walks you through concepts, such as connected retail, data mining, and artificially intelligent robotics. Each chapter contains an example of how AI is being applied in the fashion industry illustrated by one major technological theme. There are no equations, algorithms, or code. The technological explanations are cumulative so you'll discover more information about the inner workings of artificial intelligence in practical stages as the book progresses. What You’ll Learn Gain a basic understanding of AI and how it is used in fashion Understand key terminology and concepts in AI Review the new competitive landscape of the fashion industry Conceptualize and develop new ways to apply AI within the workplaceWho This Book Is For Fashion industry professionals from designers, managers, department heads, and executives can use this book to learn about how AI is impacting roles in every department and profession.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
This new collection of essays follows in the footsteps of the successful volume Thinking Ahead - Essays on Big Data, Digital Revolution, and Participatory Market Society, published at a time when our societies were on a path to technological totalitarianism, as exemplified by mass surveillance reported by Edward Snowden and others. Meanwhile the threats have diversified and tech companies have gathered enough data to create detailed profiles about almost everyone living in the modern world - profiles that can predict our behavior better than our friends, families, or even partners. This is not only used to manipulate peoples’ opinions and voting behaviors, but more generally to influence consumer behavior at all levels. It is becoming increasingly clear that we are rapidly heading towards a cybernetic society, in which algorithms and social bots aim to control both the societal dynamics and individual behaviors. span lang="EN-US" style="font-family: However there are also silver linings: most of the threats that have accumulated over the past years have been identified and regulations are on the way to being introduced. Furthermore, entirely novel approaches based on blockchain technology and other developments derived from complexity science offer the possibility of entirely redefining collective trust and building platforms to support our core societal values. span lang="EN-US" style="font-family: This book conveys an encouraging vision of the future and provides a sketch of how it may look: The road to digital enlightenment is still open, but it needs to be taken now./pbrp
A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.
This book focuses on the emerging areas of information networking and its applications, presenting the latest innovative research and development techniques from both theoretical and practical perspectives. Today’s networks and information systems are evolving rapidly, and there are new trends and applications in information networking, such as wireless sensor networks, ad hoc networks, peer-to-peer systems, vehicular networks, opportunistic networks, grid and cloud computing, pervasive and ubiquitous computing, multimedia systems, security, multi-agent systems, high-speed networks, and web-based systems. However, since these networks need to be capable of managing the increasing number of users, provide support for different services, guarantee the QoS, and optimize the network resources, a number of research issues and challenges have to be considered in order to provide solutions.
Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]