Download Free The Deformation And Processing Of Structural Materials Book in PDF and EPUB Free Download. You can read online The Deformation And Processing Of Structural Materials and write the review.

Having a good understanding of a construction material’s performance under different conditions is essential for helping engineers in selecting the right type of material for a job and for setting design specifications. Keeping abreast of the latest research is an important part of this. The deformation and processing of structural materials is divided into eight chapters, each one exploring a material’s processing and deformation behaviour. They also consider how the microstructural composition of materials is affected by processing and what influence this has on its subsequent in situ performance. The materials and behaviours looked at in the chapters include: aluminium and its alloys; magnesium alloys; ferrous alloys; superalloys (Ni-based alloys); semisolid metal (SSM) processing of metallic alloys; plastic deformation of intermetallic alloys; metal matrix composites (MMCs); and fine grain superplasticity in SP materials. The first of its kind to give comprehensive coverage to the subject, The deformation and processing of structural materials is a valuable resource for engineers, researchers in mechanical, civil and structural engineering. Contains research on the preformance of materials Valuable resource for researchers in mechanical, civil and structural engineering Comprehensive coverage to the deformation and processing of all types of structural materials
Held in honor of Professor Oleg D. Sherby, this symposia held at the 2000 TMS Annual Meeting & Exhibition presented new research and review articles on several areas in which Professor Sherby made an impact: the processing and properties of ultrahigh-carbon steels, creep behavior, and superplasticity.
Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing. Covers process behaviors, such as non-uniform deformation, unstable deformation, material flow phenomena, and process performance Includes modelling and simulation of the entire deformation process Looks at control of the preferred deformation, undesirable material flow, avoidance and reduction of defects, and improving the dimensional accuracy, surface quality and microstructure construction of the produced products
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.
Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)
Conventional materials, such as nickel based alloys, will not be able to match the required performance specifications for the future generation of high temperature materials. This book reviews the characteristics and potential of a wide range of candidate superalloy replacements, such as ceramics, intermetallics, and their composites. Particular attention is devoted to the problems of processing and design with these materials.
These proceedings focus on the application of fundamental creep research to the design and development of high temperature materials for engineering applications. The book deals with all aspects of creep deformation and high temperature materials development, specifically the influence of microstructures on various aspects of creep and the application of this information in the design of highly creep resistant materials. Emphasis will be placed on advanced ceramic and metal matrix composites and advanced intermetallics. This volume brings together researchers working on fundamental issues relating to the development and characterization of high temperature materials and design engineers involved in high temperature applications.