Download Free The Data Management Cookbook Book in PDF and EPUB Free Download. You can read online The Data Management Cookbook and write the review.

Engaging Researchers with Data Management is an invaluable collection of 24 case studies, drawn from institutions across the globe, that demonstrate clearly and practically how to engage the research community with RDM. These case studies together illustrate the variety of innovative strategies research institutions have developed to engage with their researchers about managing research data. Each study is presented concisely and clearly, highlighting the essential ingredients that led to its success and challenges encountered along the way. By interviewing key staff about their experiences.
The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
A lot of companies realize that data is an invaluable asset and has to be managed accordingly. They would also like to get value from data. Everyone wants to be 'data-driven' these days. What lies beneath this idea, is the wish to make the decision-making process easier and more effective. It means delivering the required data of acceptable quality to the relevant decision makers when and where they need it. In short: a lot of companies have the necessity to manage their data properly. The main question is: how do you put this in practice? Knowing the potential of your data, and managing it correctly is the key to an effective and successful business. As a result of well-implemented data management, you will be able to reduce risks and costs, increase efficiency, ensure business continuity and successful growth. In this book, we invite you for a five-course dinner. During each course we will explain the steps of our 5-step programme which guarantees successful implementation of data management.
Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.
Eight years ago, I joined a new company. My first challenge was to develop an automated management accounting reporting system. A deep analysis of the existing reports showed us the high necessity to implement a singular reporting platform, and we opted to implement a data warehouse. At the time, one of the consultants came to me and said, "I heard that we might need data management. I don't know what it is. Check it out." So I started Googling "Data management..".This book is for professionals who are now in the same position I found myself in eight years ago and for those who want to become a data management pro of a medium sized company.It is a collection of hands-on knowledge, experience and observations on how to implement data management in an effective, feasible and "to-the-point" way.
An All-in-One Resource for Using SAS and R to Carry out Common TasksProvides a path between languages that is easier than reading complete documentationSAS and R: Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in both SAS and R, without having to navigate through the extensive, id
*This book is a brief overview of the model and has only 24 pages.*Almost every data management professional, at some point in their career, has come across the following crucial questions:1. Which industry reference model should I use for the implementation of data managementfunctions?2. What are the key data management capabilities that are feasible and applicable to my company?3. How do I measure the maturity of the data management functions and compare that withthose of my peers in the industry4. What are the critical, logical steps in the implementation of data management?The "Orange" (meta)model of data management provides a collection of techniques and templates for the practical set up of data management through the design and implementation of the data and information value chain, enabled by a set of data management capabilities.This book is a toolkit for advanced data management professionals and consultants thatare involved in the data management function implementation.This book works together with the earlier published "The Data Management Toolkit". The "Orange" model assists in specifying the feasible scope of data management capabilities, that fits company's business goals and resources. "The Data Management Toolkit" is a practical implementation guide of the chosen data management capabilities.
Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
Solve real-world data problems and create data-driven workflows for easy data movement and processing at scale with Azure Data Factory Key FeaturesLearn how to load and transform data from various sources, both on-premises and on cloudUse Azure Data Factory’s visual environment to build and manage hybrid ETL pipelinesDiscover how to prepare, transform, process, and enrich data to generate key insightsBook Description Azure Data Factory (ADF) is a modern data integration tool available on Microsoft Azure. This Azure Data Factory Cookbook helps you get up and running by showing you how to create and execute your first job in ADF. You’ll learn how to branch and chain activities, create custom activities, and schedule pipelines. This book will help you to discover the benefits of cloud data warehousing, Azure Synapse Analytics, and Azure Data Lake Gen2 Storage, which are frequently used for big data analytics. With practical recipes, you’ll learn how to actively engage with analytical tools from Azure Data Services and leverage your on-premise infrastructure with cloud-native tools to get relevant business insights. As you advance, you’ll be able to integrate the most commonly used Azure Services into ADF and understand how Azure services can be useful in designing ETL pipelines. The book will take you through the common errors that you may encounter while working with ADF and show you how to use the Azure portal to monitor pipelines. You’ll also understand error messages and resolve problems in connectors and data flows with the debugging capabilities of ADF. By the end of this book, you’ll be able to use ADF as the main ETL and orchestration tool for your data warehouse or data platform projects. What you will learnCreate an orchestration and transformation job in ADFDevelop, execute, and monitor data flows using Azure SynapseCreate big data pipelines using Azure Data Lake and ADFBuild a machine learning app with Apache Spark and ADFMigrate on-premises SSIS jobs to ADFIntegrate ADF with commonly used Azure services such as Azure ML, Azure Logic Apps, and Azure FunctionsRun big data compute jobs within HDInsight and Azure DatabricksCopy data from AWS S3 and Google Cloud Storage to Azure Storage using ADF's built-in connectorsWho this book is for This book is for ETL developers, data warehouse and ETL architects, software professionals, and anyone who wants to learn about the common and not-so-common challenges faced while developing traditional and hybrid ETL solutions using Microsoft's Azure Data Factory. You’ll also find this book useful if you are looking for recipes to improve or enhance your existing ETL pipelines. Basic knowledge of data warehousing is expected.
A quick and reliable way to build proven databases for core business functions Industry experts raved about The Data Model Resource Book when it was first published in March 1997 because it provided a simple, cost-effective way to design databases for core business functions. Len Silverston has now revised and updated the hugely successful 1st Edition, while adding a companion volume to take care of more specific requirements of different businesses. This updated volume provides a common set of data models for specific core functions shared by most businesses like human resources management, accounting, and project management. These models are standardized and are easily replicated by developers looking for ways to make corporate database development more efficient and cost effective. This guide is the perfect complement to The Data Model Resource CD-ROM, which is sold separately and provides the powerful design templates discussed in the book in a ready-to-use electronic format. A free demonstration CD-ROM is available with each copy of the print book to allow you to try before you buy the full CD-ROM.