Download Free The Dark Matter Problem Book in PDF and EPUB Free Download. You can read online The Dark Matter Problem and write the review.

Most astronomers and physicists now believe that the matter content of the Universe is dominated by dark matter: hypothetical particles which interact with normal matter primarily through the force of gravity. Though invisible to current direct detection methods, dark matter can explain a variety of astronomical observations. This book describes how this theory has developed over the past 75 years, and why it is now a central feature of extragalactic astronomy and cosmology. Current attempts to directly detect dark matter locally are discussed, together with the implications for particle physics. The author comments on the sociology of these developments, demonstrating how and why scientists work and interact. Modified Newtonian Dynamics (MOND), the leading alternative to this theory, is also presented. This fascinating overview will interest cosmologists, astronomers and particle physicists. Mathematics is kept to a minimum, so the book can be understood by non-specialists.
Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.
The exploration of the Universe, as conducted by physicists, astronomers, and cosmologists was one of the greatest intellectual adventures of the mid-twentieth century. This book, first published in 1971, tells the story of their achievements and the insight gained into the structure, history, working and scale of our Universe. Dr Sciama describes the major components of the Universe as understood at the beginning of the 1970s: the stars, galaxies, radio-galaxies and quasi-stellar objects. He discusses in detail the red shift of the lines in their optical spectra, which leads to the idea that the Universe is expanding. Theoretical discussion of the expanding Universe suggests the possibility that intergalactic space may contain a significant quantity of matter and be the seat of important physical activity. The issues involved are thoroughly debated. Also discussed is the discover and significance of the 3'K' cosmic microwave radiation, its relation to the hot big bang and the helium problem, to cosmic high energy processes and to questions of isotropy.
Describes the dark matter problem in particle physics, astrophysics and cosmology for graduate students and researchers.
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
'Clear and compact ... It's hard to fault as a brief, easily digestible introduction to some of the biggest questions in the Universe' Giles Sparrow, BBC Four's The Sky at Night , Best astronomy and space books of 2019: 5/5 All the matter and light we can see in the universe makes up a trivial 5 per cent of everything. The rest is hidden. This could be the biggest puzzle that science has ever faced. Since the 1970s, astronomers have been aware that galaxies have far too little matter in them to account for the way they spin around: they should fly apart, but something concealed holds them together. That 'something' is dark matter - invisible material in five times the quantity of the familiar stuff of stars and planets. By the 1990s we also knew that the expansion of the universe was accelerating. Something, named dark energy, is pushing it to expand faster and faster. Across the universe, this requires enough energy that the equivalent mass would be nearly fourteen times greater than all the visible material in existence. Brian Clegg explains this major conundrum in modern science and looks at how scientists are beginning to find solutions to it.
What’s in the dark? Countless generations have gazed up at the night sky and asked this question—the same question that cosmologists ask themselves as they study the universe. The answer turns out to be surprising and rich. The space between stars is filled with an exotic substance called “dark matter” that exerts gravity but does not emit, absorb, or reflect light. The space between galaxies is rife with “dark energy” that creates a sort of cosmic antigravity causing the expansion of the universe to accelerate. Together, dark matter and dark energy account for 95 percent of the content of the universe. News reporters and science journalists routinely talk about these findings using terms that they assume we have a working knowledge of, but do you really understand how astronomers arrive at their findings or what it all means? Cosmologists face a conundrum: how can we study substances we cannot see, let alone manipulate? A powerful approach is to observe objects whose motion is influenced by gravity. Einstein predicted that gravity can act like a lens to bend light. Today we see hundreds of cases of this—instances where the gravity of a distant galaxy distorts our view of a more distant object, creating multiple images or spectacular arcs on the sky. Gravitational lensing is now a key part of the international quest to understand the invisible substance that surrounds us, penetrates us, and binds the universe together. A Ray of Light in a Sea of Dark Matter offers readers a concise, accessible explanation of how astronomers probe dark matter. Readers quickly gain an understanding of what might be out there, how scientists arrive at their findings, and why this research is important to us. Engaging and insightful, Charles Keeton gives everyone an opportunity to be an active learner and listener in our ever-expanding universe. Watch a video with Charles Keeton: Watch video now. (http://www.youtube.com/watch?v=Uc3byXNS1G0).
Strategic design is about applying the principles of traditional design to "big picture" systemic challenges such as healthcare, education and the environment. It redefines how problems are approached and aims to deliver more resilient solutions. In this short book, Dan Hill outlines a new vocabulary of design, one that needs to be smuggled into the upper echelons of power. He asserts that, increasingly, effective design means engaging with the messy politics - the "dark matter" - taking place above the designer's head. And that may mean redesigning the organisation that hires you.
An award-winning science journalist details the quest to isolate and understand dark matter--and shows how that search has helped us to understand the universe we inhabit. When you train a telescope on outer space, you can see luminous galaxies, nebulae, stars, and planets. But if you add all that together, it constitutes only 15 percent of the matter in the universe. Despite decades of research, the nature of the remaining 85 percent is unknown. We call it dark matter. In The Elephant in the Universe, Govert Schilling explores the fascinating history of the search for dark matter. Evidence for its existence comes from a wealth of astronomical observations. Theories and computer simulations of the evolution of the universe are also suggestive: they can be reconciled with astronomical measurements only if dark matter is a dominant component of nature. Physicists have devised huge, sensitive instruments to search for dark matter, which may be unlike anything else in the cosmos--some unknown elementary particle. Yet so far dark matter has escaped every experiment. Indeed, dark matter is so elusive that some scientists are beginning to suspect there might be something wrong with our theories about gravity or with the current paradigms of cosmology. Schilling interviews both believers and heretics and paints a colorful picture of the history and current status of dark matter research, with astronomers and physicists alike trying to make sense of theory and observation. Taking a holistic view of dark matter as a problem, an opportunity, and an example of science in action, The Elephant in the Universe is a vivid tale of scientists puzzling their way toward the true nature of the universe.