Download Free The Critique Of Regression Book in PDF and EPUB Free Download. You can read online The Critique Of Regression and write the review.

The Critique of Regression presents the most in-depth critique of regression available in the psychoanalytic literature, whilst presenting the first psychoanalytic theory of irreversible lifespan development. The clinical implications are amply demonstrated in three chapter-length psychoanalytic cases. The most important implication is that when we revisit the past, in a private memory or in an analytic session, we remake it afresh in light of the present. The analysis of the past is always, in this sense, an exploration of the present. Gregory S. Rizzolo demonstrates that where we think we see returns, or regressions, to past stages of the lifespan, we in fact find the emergence of novel structures in subjective experience. Rizzolo considers the work of human development to be a work of mourning in which we lose, internalize and keep re-working the residue of a past to which we never return. The traditional notion of regression, which supports the fantasy of a literal return, operates as an intellectual defense against the mourning process. To critique the concept is to address the defense and to confront the loss of past relationships and of past versions of selfhood inherent in development. From the work of mourning emerge ever-new configurations of desire, defense and subjective meaning. The task of analysis is to cultivate, amidst the repetition of familiar patterns, the potential for novelty at play in each moment. This thought-provoking work will interest new and experienced psychoanalytic clinicians alike, who want to go beyond traditional theories of development to a contemporary look at how we develop inexorably across the lifespan.
PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
We are living through a period of dramatic political change – Brexit, the election of Trump, the rise of extreme right movements in Europe and elsewhere, the resurgence of nationalism and xenophobia and a concerted assault on the liberal values and ideals associated with cosmopolitanism and globalization. Suddenly we find ourselves in a world that few would have imagined possible just a few years ago, a world that seems to many to be a move backwards. How can we make sense of these dramatic developments and how should we respond to them? Are we witnessing a worldwide rejection of liberal democracy and its replacement by some kind of populist authoritarianism? This timely volume brings together some of the world's greatest minds to analyse and seek to understand the forces behind this 'great regression'. Writers from across disciplines and countries, including Paul Mason, Pankaj Mishra, Slavoj Zizek, Zygmunt Bauman, Arjun Appadurai, Wolfgang Streeck and Eva Illouz, grapple with our current predicament, framing it in a broader historical context, discussing possible future trajectories and considering ways that we might combat this reactionary turn. The Great Regression is a key intervention that will be of great value to all those concerned about recent developments and wondering how best to respond to this unprecedented challenge to the very core of liberal democracy and internationalism across the world today. For more information, see: www.thegreatregression.eu
Praise for the Fourth Edition: "This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable." —Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression Fitting nonlinear models Errors in variables ANOVA for designed experiments Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique. Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. Regression Analysis by Example, Fifth Edition is suitable for anyone with an understanding of elementary statistics.
"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.
A Comprehensive Account for Data Analysts of the Methods and Applications of Regression Analysis. Written by two established experts in the field, the purpose of the Handbook of Regression Analysis is to provide a practical, one-stop reference on regression analysis. The focus is on the tools that both practitioners and researchers use in real life. It is intended to be a comprehensive collection of the theory, methods, and applications of regression methods, but it has been deliberately written at an accessible level. The handbook provides a quick and convenient reference or “refresher” on ideas and methods that are useful for the effective analysis of data and its resulting interpretations. Students can use the book as an introduction to and/or summary of key concepts in regression and related course work (including linear, binary logistic, multinomial logistic, count, and nonlinear regression models). Theory underlying the methodology is presented when it advances conceptual understanding and is always supplemented by hands-on examples. References are supplied for readers wanting more detailed material on the topics discussed in the book. R code and data for all of the analyses described in the book are available via an author-maintained website. "I enjoyed the presentation of the Handbook, and I would be happy to recommend this nice handy book as a reference to my students. The clarity of the writing and proper choices of examples allows the presentations ofmany statisticalmethods shine. The quality of the examples at the end of each chapter is a strength. They entail explanations of the resulting R outputs and successfully guide readers to interpret them." American Statistician
The authors provide a systematic treatment of the major problems involved in using regression analysis. They clearly and concisely discuss the consequences of violating the assumptions of the regression model, procedures for detecting violations, and strategies for dealing with these problems.
Looking for an easy-to-understand text to guide you through the tough topic of regression modeling? INTRODUCTION TO REGRESSION MODELING (WITH CD-ROM) offers a blend of theory and regression applications and will give you the practice you need to tackle this subject through exercises, case studies. and projects that have you identify a problem of interest and collect data relevant to the problem's solution. The book goes beyond linear regression by covering nonlinear models, regression models with time series errors, and logistic and Poisson regression models.
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.