Download Free The Correction For Fluorescence By Characteristic Radiation In Microprobe Analysis Book in PDF and EPUB Free Download. You can read online The Correction For Fluorescence By Characteristic Radiation In Microprobe Analysis and write the review.

The Electron "licroprobe X-!{ay Analyscr conceivcd b ' R C.\S'L\I: \G and A. Cl'!: '\ lEI( in 1949 has been developcd as an extremelv po\\'crful tool in spcctrochcmical analysis for a wide range of applications, ranging from qualitative elcmcntary distribution studies, to highly localiscd quantitatin analysis on a one micron scale. \\'ith the increasing number oi' versatile instruments, commcrcially available, the domain of applications - in metallurgy, solid state physics, mineralogy and geology, biology and medicine, arts and archeology - is rapidly expanding, particularly because reliable quantitative analyses can be achieved. It is well established that in multicomponent specimens, the relative x-ray intensity generated by the electron bombardment - i.e. the intensity ratio of the characteristic x-ray radiation emitted under identical experimental conditions by the specimen and a calibration standard - is not directly correlated to the elementary mass concentration. The use of a wide scale of carefully prepared homogeneous calibration standards is generally very tedious and restricted to binar)' systems. For more complex specimens, the conversion of recorded x-ra)' intensity ratios to elementary mass concentration requires, besides carefule selection of experimental conditions, an adequate correction calculation to take account oi' the various physical phenomenas occurring in the tarp;et - electron retardation, electron backseattering, x-ray excitation efficieney, fluorescence enhaneement by eharaeteristic and continuous radiation and x-ray mass absorption.
X-ray Optics and X-ray Microanalysis covers the proceedings of the Symposium on X-ray Optics and X-ray Microanalysis, held at Stanford University on August 22-24, 1962. The book focuses on X-ray microscopy, microradiography, radiation and irradiation, and X-ray microanalysis. The selection first offers information on the methods of X-ray microscopy and X-ray absorption microanalysis. Discussions focus on X-ray scanning microscopy, contact microradiography, point projection microscopy, and total dry-weight determinations. The text then takes a look at X-ray microanalysis in biology and medicine; electron microscopic enlargements of X-ray absorption micrographs; and automation in microradiography. The publication examines the production of Fresnel zone plates for extreme ultraviolet and soft X radiation; quantitative microradiographic studies of human epidermis; and irradiation effect on total organic nerve-cell material determined by integrating X-ray absorption. The manuscript then reviews the calculation of fluorescence excited by characteristic radiation in the X-ray microanalyzer and the method for calculating the absorption correction in electron-probe microanalysis. The selection is a valuable reference for readers interested in X-ray technology.