Download Free The Computing Teacher Book in PDF and EPUB Free Download. You can read online The Computing Teacher and write the review.

Previously known as Teaching ICT, this second edition has been carefully revised to meet the new demands of computer science as a curriculum subject. With a clear focus on the theory and practice that supports high quality teaching, this textbook provides pragmatic guidance on how to plan, teach, manage and assess computer science teaching. Key coverage includes: · An awareness of the requirements of the 2014 National Curriculum for England · Developing computational thinking and digital literacy in your classroom · Pedagogy for teaching computer programming · Computer science in primary schools and the transition to secondary This is essential reading for secondary computer science student teachers and for those on primary initial teacher education courses seeking a greater understanding of the subject, including school-based (SCITT, School Direct, Teach First), university-based (PGCE, PGDE, BEd, BA QTS) and employment-based routes into teaching, and current teachers updating their practice. Carl Simmons and Claire Hawkins are Senior Lecturers at Edge Hill University.
This book provides a step-by-step guide to teaching computing at secondary level. It offers an entire framework for planning and delivering the curriculum and shows you how to create a supportive environment for students in which all can enjoy computing. The focus throughout is on giving students the opportunity to think, program, build and create with confidence and imagination, transforming them from users to creators of technology. In each chapter, detailed research and teaching theory is combined with resources to aid the practitioner, including case studies, planning templates and schemes of work that can be easily adapted. The book is split into three key parts: planning, delivery, and leadership and management, and covers topics such as: curriculum and assessment design lesson planning cognitive science behind learning computing pedagogy and instructional principles mastery learning in computing how to develop students’ computational thinking supporting students with special educational needs and disabilities encouraging more girls to study computing actions, habits and routines of effective computing teachers behaviour management and developing a strong classroom culture how to support and lead members of your team. Teaching Computing in Secondary Schools is essential reading for trainee and practising teachers, and will prove to be an invaluable resource in helping teaching professionals ensure that students acquire a wide range of computing skills which will support them in whatever career they choose.
"Computer science has emerged as a key driver of innovation in the 21st century. Preparing teachers to teach computer science, however, remains an enormous challenge as there are few highly qualified teachers who can teach computer science or integrate computer science content into K-12 curricula. To address this challenge, NSF established the CS10K program with the aim of preparing 10,000 teachers in 10,000 high schools teaching computer science curricula. While this effort is still under-way, there has not been a systematic attempt to capture the work done in this area. In order to prepare a generation of teachers who are capable of delivering computer science content to students, we must identify research-based examples, pedagogical strategies and policies that can facilitate changes in teacher knowledge and practices. The purpose of this project is to provide examples that could help guide the design and delivery of effective teacher preparation on the teaching of computer science concepts. This book identifies promising pathways, pedagogical strategies and policies that help pre-service and in-service teachers infuse computing ideas in their curricula as well as teach stand-alone computing courses. The book focuses on pedagogical practices for developing and assessing pre-service teacher knowledge of computer science, course design models for pre-service teachers, and discussion of policies that can support the teaching of computer science. The primary audience of the book will be students and faculty in educational technology, educational or cognitive psychology, learning theory, curriculum and instruction, computer science, instructional systems and learning sciences"--
Coding teaches our students the essence of logical thinking and problem solving while also preparing them for a world in which computing is becoming increasingly pervasive. While there's excitement and enthusiasm about programming becoming an intrinsic part of K-12 curricula the world over, there's also growing anxiety about preparing teachers to teach effectively at all grade levels.This book strives to be an essential, enduring, practical guide for every K-12 teacher anywhere who is either teaching or planning to teach computer science and programming at any grade level. To this end, readers will discover:? An A-to-Z organization that affords comprehensive insight into teaching introductory programming.? 26 chapters that cover foundational concepts, practices and well-researched pedagogies related to teaching introductory programming as an integral part of K-12 computer science. Cumulatively these chapters address the two salient building blocks of effective teaching of introductory programming-what content to teach (concepts and practices) and how to teach (pedagogy).? Concrete ideas and rich grade-appropriate examples inspired by practice and research for classroom use.? Perspectives and experiences shared by educators and scholars who are actively practicing and/or examiningthe teaching of computer science and programming in K-12 classrooms.
This textbook presents both a conceptual framework and detailed implementation guidelines for computer science (CS) teaching. Updated with the latest teaching approaches and trends, and expanded with new learning activities, the content of this new edition is clearly written and structured to be applicable to all levels of CS education and for any teaching organization. Features: provides 110 detailed learning activities; reviews curriculum and cross-curriculum topics in CS; explores the benefits of CS education research; describes strategies for cultivating problem-solving skills, for assessing learning processes, and for dealing with pupils’ misunderstandings; proposes active-learning-based classroom teaching methods, including lab-based teaching; discusses various types of questions that a CS instructor or trainer can use for a range of teaching situations; investigates thoroughly issues of lesson planning and course design; examines the first field teaching experiences gained by CS teachers.
Teaching can be intimidating for beginning faculty. Some graduate schools and some computing faculty provide guidance and mentoring, but many do not. Often, a new faculty member is assigned to teach a course, with little guidance, input, or feedback. Teaching Computing: A Practitioner’s Perspective addresses such challenges by providing a solid resource for both new and experienced computing faculty. The book serves as a practical, easy-to-use resource, covering a wide range of topics in a collection of focused down-to-earth chapters. Based on the authors’ extensive teaching experience and his teaching-oriented columns that span 20 years, and informed by computing-education research, the book provides numerous elements that are designed to connect with teaching practitioners, including: A wide range of teaching topics and basic elements of teaching, including tips and techniques Practical tone; the book serves as a down-to-earth practitioners’ guide Short, focused chapters Coherent and convenient organization Mix of general educational perspectives and computing-specific elements Connections between teaching in general and teaching computing Both historical and contemporary perspectives This book presents practical approaches, tips, and techniques that provide a strong starting place for new computing faculty and perspectives for reflection by seasoned faculty wishing to freshen their own teaching.
This Handbook describes the extent and shape of computing education research today. Over fifty leading researchers from academia and industry (including Google and Microsoft) have contributed chapters that together define and expand the evidence base. The foundational chapters set the field in context, articulate expertise from key disciplines, and form a practical guide for new researchers. They address what can be learned empirically, methodologically and theoretically from each area. The topic chapters explore issues that are of current interest, why they matter, and what is already known. They include discussion of motivational context, implications for practice, and open questions which might suggest future research. The authors provide an authoritative introduction to the field which is essential reading for policy makers, as well as both new and established researchers.
Empower tomorrow’s tech innovators Our students are avid users and consumers of technology. Isn’t it time that they see themselves as the next technological innovators, too? Computational Thinking and Coding for Every Student is the beginner’s guide for K-12 educators who want to learn to integrate the basics of computer science into their curriculum. Readers will find Practical strategies for teaching computational thinking and the beginning steps to introduce coding at any grade level, across disciplines, and during out-of-school time Instruction-ready lessons and activities for every grade Specific guidance for designing a learning pathway for elementary, middle, or high school students Justification for making coding and computer science accessible to all A glossary with definitions of key computer science terms, a discussion guide with tips for making the most of the book, and companion website with videos, activities, and other resources Momentum for computer science education is growing as educators and parents realize how fundamental computing has become for the jobs of the future. This book is for educators who see all of their students as creative thinkers and active contributors to tomorrow’s innovations. "Kiki Prottsman and Jane Krauss have been at the forefront of the rising popularity of computer science and are experts in the issues that the field faces, such as equity and diversity. In this book, they’ve condensed years of research and practitioner experience into an easy to read narrative about what computer science is, why it is important, and how to teach it to a variety of audiences. Their ideas aren’t just good, they are research-based and have been in practice in thousands of classrooms...So to the hundreds and thousands of teachers who are considering, learning, or actively teaching computer science—this book is well worth your time." Pat Yongpradit Chief Academic Officer, Code.org
A guide for educators to incorporate computational thinking—a set of cognitive skills applied to problem solving—into a broad range of subjects. Computational thinking—a set of mental and cognitive tools applied to problem solving—is a fundamental skill that all of us (and not just computer scientists) draw on. Educators have found that computational thinking enhances learning across a range of subjects and reinforces students’ abilities in reading, writing, and arithmetic. This book offers a guide for incorporating computational thinking into middle school and high school classrooms, presenting a series of activities, projects, and tasks that employ a range of pedagogical practices and cross a variety of content areas. As students problem solve, communicate, persevere, work as a team, and learn from mistakes, they develop a concrete understanding of the abstract principles used in computer science to create code and other digital artifacts. The book guides students and teachers to integrate computer programming with visual art and geometry, generating abstract expressionist–style images; construct topological graphs that represent the relationships between characters in such literary works as Harry Potter and the Sorcerer’s Stone and Romeo and Juliet; apply Newtonian physics to the creation of computer games; and locate, analyze, and present empirical data relevant to social and political issues. Finally, the book lists a variety of classroom resources, including the programming languages Scratch (free to all) and Codesters (free to teachers). An accompanying website contains the executable programs used in the book’s activities.