Download Free The Complexity Of Robot Motion Planning Book in PDF and EPUB Free Download. You can read online The Complexity Of Robot Motion Planning and write the review.

The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.
Robotics has come to attract the attention of mathematicians and theoretical computer scientists to a rapidly increasing degree. Initial investigations have shown that robotics is a rich source of deep theoretical problems, which range over computational geometry, control theory, and many aspects of physics, and whose solutions draw upon methods developed in subjects as diverse as automata theory, algebraic topology, and Fourier analysis.
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.
Practical Motion Planning in Robotics Current Approaches and Future Directions Edited by Kamal Gupta Simon Fraser University, Burnaby, Canada Angel P. del Pobil Jaume-l University, Castellon, Spain Designed to bridge the gap between research and industry, Practical Motion Planning in Robotics brings theoretical advances to bear on real-world applications. Capitalizing on recent progress, this comprehensive study emphasizes the practical aspects of techniques for collision detection, obstacle avoidance, path planning and manipulation planning. The broad approach spans both model- and sensor-based motion planning, collision detection and geometric complexity, and future directions. Features include: - Review of state-of-the-art techniques and coverage of the main issues to be considered in the development of motion planners for use in real applications - Focus on gross motion planning for articulated arms enabling robots to perform non-contact tasks with relatively high tolerances plus brief consideration of mobile robots - The use of efficient algorithms to tackle incremental changes in the environment - Illlustration of robot motion planning applications in virtual prototyping and the shipbuilding industry - Demonstration of efficient path planners combining both local and global planning approaches in conjunction with efficient techniques for collision detection and distance computations - International contributions from academia and industry Combining theory and practice, this timely book will appeal to academic researchers and practising engineers in the fields of robotic systems, mechatronics and computer science.
Content Description #Includes bibliographical references.
Information communication technologies have become the necessity in everyday life enabling increased level of communication, processing and information exchange to extent that one could not imagine only a decade ago. Innovations in these technologies open new fields in areas such as: language processing, biology, medicine, robotics, security, urban planning, networking, governance and many others. The applications of these innovations are used to define services that not only ease, but also increase the quality of life. Good education is essential for establishing solid basis of individual development and performance. ICT is integrated part of education at every level and type. Therefore, the special focus should be given to possible deployment of the novel technologies in order to achieve educational paradigms adapted to possible educational consumer specific and individual needs. This book offers a collection of papers presented at the Fifth International Conference on ICT Innovations held in September 2013, in Ohrid, Macedonia. The conference gathered academics, professionals and practitioners in developing solutions and systems in the industrial and business arena especially innovative commercial implementations, novel applications of technology, and experience in applying recent ICT research advances to practical solutions.
This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis-Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics.The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students.
Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering.
Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Workbench represents an important new contribution in the field of practical computer technology. TOSIYASU L. KUNII To my parents Kenjiro and Nori Fujimura Preface Motion planning is an area in robotics that has received much attention recently. Much of the past research focuses on static environments - various methods have been developed and their characteristics have been well investigated. Although it is essential for autonomous intelligent robots to be able to navigate within dynamic worlds, the problem of motion planning in dynamic domains is relatively little understood compared with static problems.