Download Free The Cohomology Of Monoids Book in PDF and EPUB Free Download. You can read online The Cohomology Of Monoids and write the review.

Zusammenfassung: This monograph covers topics in the cohomology of monoids up through recent developments. Jonathan Leech's original monograph in the Memoirs of the American Mathematical Society dates back to 1975. This book is an organized, accessible, and self-contained account of this cohomology that includes more recent significant developments that were previously scattered among various publications, along with completely new material. It summarizes the original Leech theory and provides a modern and thorough treatment of the cohomological classification of coextensions of both monoids and monoidal groupoids, including the case of monoids with operators. This cohomology is also compared to the classical Eilenberg-Mac Lane and Hochschild-Mitchell cohomologies. Connections are also established with the Lausch-Loganathan cohomology theory for inverse semigroups, the Gabriel-Zisman cohomology of simplicial sets, the Wells cohomology of small categories (also known as Baues-Wirsching cohomology), Grothendieck sheaf cohomology, and finally Beck's triple cohomology. It also establishes connections with Grillet's cohomology theory for commutative semigroups. The monograph is aimed at researchers in the theory of monoids, or even semigroups, and its interface with category theory, homological algebra, and related fields. However, it is also written to be accessible to graduate students in mathematics and mathematicians in general
This book provides an organized exposition of the current state of the theory of commutative semigroup cohomology, a theory which was originated by the author and has matured in the past few years. The work contains a fundamental scientific study of questions in the theory. The various approaches to commutative semigroup cohomology are compared. The problems arising from definitions in higher dimensions are addressed. Computational methods are reviewed. The main application is the computation of extensions of commutative semigroups and their classification. Previously the components of the theory were scattered among a number of research articles. This work combines all parts conveniently in one volume. It will be a valuable resource for future students of and researchers in commutative semigroup cohomology and related areas.
A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed. - Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
In presenting this treatment of homological algebra, it is a pleasure to acknowledge the help and encouragement which I have had from all sides. Homological algebra arose from many sources in algebra and topology. Decisive examples came from the study of group extensions and their factor sets, a subject I learned in joint work with OTTO SCHIL LING. A further development of homological ideas, with a view to their topological applications, came in my long collaboration with SAMUEL ElLENBERG; to both collaborators, especial thanks. For many years the Air Force Office of Scientific Research supported my research projects on various subjects now summarized here; it is a pleasure to acknowledge their lively understanding of basic science. Both REINHOLD BAER and JOSEF SCHMID read and commented on my entire manuscript; their advice has led to many improvements. ANDERS KOCK and JACQUES RIGUET have read the entire galley proof and caught many slips and obscurities. Among the others whose sug gestions have served me well, I note FRANK ADAMS, LOUIS AUSLANDER, WILFRED COCKCROFT, ALBRECHT DOLD, GEOFFREY HORROCKS, FRIED RICH KASCH, JOHANN LEICHT, ARUNAS LIULEVICIUS, JOHN MOORE, DIE TER PUPPE, JOSEPH YAO, and a number of my current students at the University of Chicago - not to m~ntion the auditors of my lectures at Chicago, Heidelberg, Bonn, Frankfurt, and Aarhus. My wife, DOROTHY, has cheerfully typed more versions of more chapters than she would like to count. Messrs.
Of all topological algebraic structures compact topological groups have perhaps the richest theory since 80 many different fields contribute to their study: Analysis enters through the representation theory and harmonic analysis; differential geo metry, the theory of real analytic functions and the theory of differential equations come into the play via Lie group theory; point set topology is used in describing the local geometric structure of compact groups via limit spaces; global topology and the theory of manifolds again playa role through Lie group theory; and, of course, algebra enters through the cohomology and homology theory. A particularly well understood subclass of compact groups is the class of com pact abelian groups. An added element of elegance is the duality theory, which states that the category of compact abelian groups is completely equivalent to the category of (discrete) abelian groups with all arrows reversed. This allows for a virtually complete algebraisation of any question concerning compact abelian groups. The subclass of compact abelian groups is not so special within the category of compact. groups as it may seem at first glance. As is very well known, the local geometric structure of a compact group may be extremely complicated, but all local complication happens to be "abelian". Indeed, via the duality theory, the complication in compact connected groups is faithfully reflected in the theory of torsion free discrete abelian groups whose notorious complexity has resisted all efforts of complete classification in ranks greater than two.
This solid volume discusses all the key topics in detail, including classification, orbit structure, representations, universal constructions, and abstract analogues. Open problems are discussed as they arise and many useful exercises are included.
This is the first book about commutative semigroups in general. Emphasis is on structure but the other parts of the theory are at least surveyed and a full set of about 850 references is included. The book is intended for mathematicians who do research on semigroups or who encounter commutative semigroups in their research.
The main purpose of the present work is to present to the reader a particularly nice category for the study of homotopy, namely the homo topic category (IV). This category is, in fact, - according to Chapter VII and a well-known theorem of J. H. C. WHITEHEAD - equivalent to the category of CW-complexes modulo homotopy, i.e. the category whose objects are spaces of the homotopy type of a CW-complex and whose morphisms are homotopy classes of continuous mappings between such spaces. It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo logical algebra. Our category is thus the" topological" analogue of the derived category of an abelian category (VERDIER). The algebraic machinery upon which this work is essentially based includes the usual grounding in category theory - summarized in the Dictionary - and the theory of categories of fractions which forms the subject of the first chapter of the book. The merely topological machinery reduces to a few properties of Kelley spaces (Chapters I and III). The starting point of our study is the category ,10 Iff of simplicial sets (C.S.S. complexes or semi-simplicial sets in a former terminology).