Download Free The Coevolutionary Process Book in PDF and EPUB Free Download. You can read online The Coevolutionary Process and write the review.

Traditional ecological approaches to species evolution have frequently studied too few species, relatively small areas, and relatively short time spans. In The Coevolutionary Process, John N. Thompson advances a new conceptual approach to the evolution of species interactions—the geographic mosaic theory of coevolution. Thompson demonstrates how an integrated study of life histories, genetics, and the geographic structure of populations yields a broader understanding of coevolution, or the development of reciprocal adaptations and specializations in interdependent species. Using examples of species interactions from an enormous range of taxa, Thompson examines how and when extreme specialization evolves in interdependent species and how geographic differences in specialization, adaptation, and the outcomes of interactions shape coevolution. Through the geographic mosaic theory, Thompson bridges the gap between the study of specialization and coevolution in local communities and the study of broader patterns seen in comparisons of the phylogenies of interacting species.
Coevolution—reciprocal evolutionary change in interacting species driven by natural selection—is one of the most important ecological and genetic processes organizing the earth's biodiversity: most plants and animals require coevolved interactions with other species to survive and reproduce. The Geographic Mosaic of Coevolution analyzes how the biology of species provides the raw material for long-term coevolution, evaluates how local coadaptation forms the basic module of coevolutionary change, and explores how the coevolutionary process reshapes locally coevolving interactions across the earth's constantly changing landscapes. Picking up where his influential The Coevolutionary Process left off, John N. Thompsonsynthesizes the state of a rapidly developing science that integrates approaches from evolutionary ecology, population genetics, phylogeography, systematics, evolutionary biochemistry and physiology, and molecular biology. Using models, data, and hypotheses to develop a complete conceptual framework, Thompson also draws on examples from a wide range of taxa and environments, illustrating the expanding breadth and depth of research in coevolutionary biology.
“It is not only the species that change evolutionarily through interactions . . . the interactions themselves also change.” Thus states John N. Thompson in the foreword to Interaction and Coevolution, the first title in his series of books exploring the relentless nature of evolution and the processes that shape the web of life. Originally published in 1982 more as an idea piece—an early attempt to synthesize then academically distinct but logically linked strands of ecological thought and to suggest avenues for further research—than as a data-driven monograph, Interaction and Coevolution would go on to be considered a landmark study that pointed to the beginning of a new discipline. Through chapters on antagonism, mutualism, and the effects of these interactions on populations, speciation, and community structure, Thompson seeks to explain not only how interactions differ in the selection pressures they exert on species, but also when interactions are most likely to lead to coevolution. In this era of climate change and swiftly transforming environments, the ideas Thompson puts forward in Interaction and Coevolution are more relevant than ever before.
Charles Darwin's "On the Origins of Species" had two principal goals: to show that species had not been separately created and to show that natural selection had been the main force behind their proliferation and descent from common ancestors. In "Coevolution," the author proposes a powerful new theory of cultural evolution--that is, of the descent with modification of the shared conceptual systems we call "cultures"--that is parallel in many ways to Darwin's theory of organic evolution. The author suggests that a process of cultural selection, or preservation by preference, driven chiefly by choice or imposition depending on the circumstances, has been the main but not exclusive force of cultural change. He shows that this process gives rise to five major patterns or "modes" in which cultural change is at odds with genetic change. Each of the five modes is discussed in some detail and its existence confirmed through one or more case studies chosen for their heuristic value, the robustness of their data, and their broader implications. But "Coevolution" predicts not simply the existence of the five modes of gene-culture relations; it also predicts their relative importance in the ongoing dynamics of cultural change in particular cases. The case studies themselves are lucid and innovative reexaminations of an array of oft-pondered anthropological topics--plural marriage, sickle-cell anemia, basic color terms, adult lactose absorption, incest taboos, headhunting, and cannibalism. In a general case, the author's goal is to demonstrate that an evolutionary analysis of both genes and culture has much to contribute to our understanding of human diversity, particularly behavioral diversity, and thus to the resolution of age-old questions about nature and nurture, genes and culture.
At a glance, most species seem adapted to the environment in which they live. Yet species relentlessly evolve, and populations within species evolve in different ways. Evolution, as it turns out, is much more dynamic than biologists realized just a few decades ago. In Relentless Evolution, John N. Thompson explores why adaptive evolution never ceases and why natural selection acts on species in so many different ways. Thompson presents a view of life in which ongoing evolution is essential and inevitable. Each chapter focuses on one of the major problems in adaptive evolution: How fast is evolution? How strong is natural selection? How do species co-opt the genomes of other species as they adapt? Why does adaptive evolution sometimes lead to more, rather than less, genetic variation within populations? How does the process of adaptation drive the evolution of new species? How does coevolution among species continually reshape the web of life? And, more generally, how are our views of adaptive evolution changing? Relentless Evolution draws on studies of all the major forms of life—from microbes that evolve in microcosms within a few weeks to plants and animals that sometimes evolve in detectable ways within a few decades. It shows evolution not as a slow and stately process, but rather as a continual and sometimes frenetic process that favors yet more evolutionary change.
Should digital technology be viewed as a new life form, sharing our ecosystem and coevolving with us? Are humans defining technology, or is technology defining humans? In this book, Edward Ashford Lee considers the case that we are less in control of the trajectory of technology than we think. It shapes us as much as we shape it, and it may be more defensible to think of technology as the result of a Darwinian coevolution than the result of top-down intelligent design. Richard Dawkins famously said that a chicken is an egg's way of making another egg. Is a human a computer's way of making another computer? To understand this question requires a deep dive into how evolution works, how humans are different from computers, and how the way technology develops resembles the emergence of a new life form on our planet. Lee presents the case for considering digital beings to be living, then offers counterarguments. What we humans do with our minds is more than computation, and what digital systems do—be teleported at the speed of light, backed up, and restored—may never be possible for humans. To believe that we are simply computations, he argues, is a “dataist” faith and scientifically indefensible. Digital beings depend on humans—and humans depend on digital beings. More likely than a planetary wipe-out of humanity is an ongoing, symbiotic coevolution of culture and technology.
For many of us, the mere mention of lice forces an immediate hand to the head, and recollection of childhood experience with nits, special shampoos, etc. But for a certain breed of biologist, lice make for fascinating scientific fodder, especially so if you are a scientist studying coevolution. Lice and their various hosts--humans, birds, etc. --provide a stunning example of the ecology of species coevolution. This system of complex symbiotic relations reveals some of the ecological principles of coevolutionary relations, one of the most exciting areas of research in evolutionary biology of recent. This work provides an introduction to coevolutionary concepts and approaches, ranging from microevolutionary (ecological) time to macroevolutionary time. The authors then use the system of parasitic lice and their hosts to illustrate some of these different concepts and approaches. They draw examples from a variety of other coevolving systems for comparative purposes, and emphasize the integration of cophylogenetic, comparative, and experimental data in testing coevolutionary hypotheses. Because lice are permanent parasites that spend their entire lifecycle on the body of the host, their close ecological association makes them ideally suited for this kind of synthetic overview of coevolution."
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
Ground-breaking yet non-technical analysis of the analogy that technological artefacts 'evolve' like biological organisms.
Quantitative approaches to evolutionary biology traditionally consider evolutionary change in isolation from an important pressure in natural selection: the demography of coevolving populations. In Analysis of Evolutionary Processes, Fabio Dercole and Sergio Rinaldi have written the first comprehensive book on Adaptive Dynamics (AD), a quantitative modeling approach that explicitly links evolutionary changes to demographic ones. The book shows how the so-called AD canonical equation can answer questions of paramount interest in biology, engineering, and the social sciences, especially economics. After introducing the basics of evolutionary processes and classifying available modeling approaches, Dercole and Rinaldi give a detailed presentation of the derivation of the AD canonical equation, an ordinary differential equation that focuses on evolutionary processes driven by rare and small innovations. The authors then look at important features of evolutionary dynamics as viewed through the lens of AD. They present their discovery of the first chaotic evolutionary attractor, which calls into question the common view that coevolution produces exquisitely harmonious adaptations between species. And, opening up potential new lines of research by providing the first application of AD to economics, they show how AD can explain the emergence of technological variety. Analysis of Evolutionary Processes will interest anyone looking for a self-contained treatment of AD for self-study or teaching, including graduate students and researchers in mathematical and theoretical biology, applied mathematics, and theoretical economics.