Download Free The Choanoflagellates Book in PDF and EPUB Free Download. You can read online The Choanoflagellates and write the review.

A unique account of the biology, ecology and evolution of choanoflagellates - the closest, known, living, unicellular relatives of animals.
Choanoflagellates have three distinctive claims to fame: they are the closest, living, unicellular relatives of animals; they are a major component of aquatic microbial foodwebs; and one group is remarkable for its siliceous basket-like coverings. This landmark book offers a unique synthesis of over forty years of choanoflagellates research. Key areas are covered, from the phylogenetic evidence supporting the sister-group relationship between choanoflagellates and Metazoa, to choanoflagellate distribution and diversity in marine and freshwater environments. The structure and assembly of choanoflagellate loricae is also presented together with a full discussion of a novel example of 'regulatory evolution', suggesting that the switch from nudiform to tectiform cell division and lorica production was achieved by a sudden reorganisation of existing structures and mechanisms. Providing an authoritative summary of what is currently known about choanoflagellates, this title will serve as a foundation upon which future research and discussion can take place.
A renowned biologist provides a sweeping chronicle of more than four billion years of life on Earth, shedding new light on evolutionary theory and history, sexual selection, speciation, extinction, and genetics.
New York Times Bestseller New York Times Notable Book of 2016 • NPR Great Read of 2016 • Named a Best Book of 2016 by The Economist, Smithsonian, NPR's Science Friday, MPR, Minnesota Star Tribune, Kirkus Reviews, Publishers Weekly, The Guardian, Times (London) From Pulitzer Prize winner Ed Yong, a groundbreaking, wondrously informative, and vastly entertaining examination of the most significant revolution in biology since Darwin—a “microbe’s-eye view” of the world that reveals a marvelous, radically reconceived picture of life on earth. Every animal, whether human, squid, or wasp, is home to millions of bacteria and other microbes. Pulitzer Prize-winning author Ed Yong, whose humor is as evident as his erudition, prompts us to look at ourselves and our animal companions in a new light—less as individuals and more as the interconnected, interdependent multitudes we assuredly are. The microbes in our bodies are part of our immune systems and protect us from disease. In the deep oceans, mysterious creatures without mouths or guts depend on microbes for all their energy. Bacteria provide squid with invisibility cloaks, help beetles to bring down forests, and allow worms to cause diseases that afflict millions of people. Many people think of microbes as germs to be eradicated, but those that live with us—the microbiome—build our bodies, protect our health, shape our identities, and grant us incredible abilities. In this astonishing book, Ed Yong takes us on a grand tour through our microbial partners, and introduces us to the scientists on the front lines of discovery. It will change both our view of nature and our sense of where we belong in it.
The publication of this book was undertaken with two purposes in view: to bring together informatian on the deposition by living organ isms of unique skeletal structures composed of amorphous silica, and to review recent data on the involvement of silicon in physiological and biochemical processes. Although widely varying viewpoints are represented, all the contributors are very interested in the events in volved in the formatian of siliceaus structures and their function. Data presented deal with these questions in a variety of plant and animal systems, and at levels ranging from the evolutionary to the biochemical and ultrastructural. Innovations in electron microscopy and, indeed, the advent of electron microscopy itself, have stimulated many ultra structural studies of silica deposition, work which has deepened and widened the interest in those organisms which routinely produce "glassy skeletons. " The question of how silicon participates in biological systems in volves a spectrum of fields that indudes the chemistry of silicon per se, its biogeochemistry, biochemistry, ecology, and so forth. In this book, however, attention is focused up on the biological aspects of silicon and siliceous structures, with emphasis on the evolutian, phylogeny, morphology, and distribution of siliceaus structures, on the cellular as peets of silica deposition, and on the physiological and biochemical roles of silicon. This volume represents the first compilatian of such data. Because such a variety of subjects and fields are covered, the reader will have to glean for himself some of the comparative aspects of the data.
National Book Award Finalist: A biologist’s “thoroughly enjoyable” account of the expeditions that unearthed the history of life on our planet (Publishers Weekly). Not so long ago, most of our world was an unexplored wilderness. Our sense of its age was vague and vastly off the mark, and much of the knowledge of our own species’ history was a set of fantastic myths and fairy tales. But scientists were about to embark on an amazing new era of understanding. From the New York Times–bestselling author of The Big Picture, this book leads us on a rousing voyage that recounts the most important discoveries in two centuries of natural history: from Darwin’s trip around the world to Charles Walcott’s discovery of pre-Cambrian life in the Grand Canyon; from Louis and Mary Leakey’s investigation of our deepest past in East Africa to the trailblazers in modern laboratories who have located a time clock in our DNA. Filled with the same sense of adventure that spurred on these extraordinary men and women, Remarkable Creatures is a “stirring introduction to the wonder of evolutionary biology” (Kirkus Reviews). “Charming and enlightening.” —San Francisco Chronicle “As fast-paced as a detective story.” —Nature
Epigenetic Mechanisms of the Cambrian Explosion provides readers with a basic biological knowledge and epigenetic explanation of the biological puzzle of the Cambrian explosion, the unprecedented rapid diversification of animals that began 542 million years ago. During an evolutionarily instant of ~10 million years, which represents only 0.3% of the time of existence of life on Earth, or less than 2% of the time of existence of metazoans, all of the 30 extant body plans, major animal groups (phyla) and several extinct groups appeared. The work helps address this phenomena and tries to answer remaining questions for evolutionary biology, epigenetics, and scientific researchers. The book recognizes and presents objective representations of alternative theories for epigenetic evolution in this period, with the author drawing on his epigenetic theory of evolution to explain the causal basis of the Cambrian explosion. Both empirical evidence and theoretical arguments are presented in support of this thought-provoking epigenetic theory. - Explains the Cambrian explosion from an entirely epigenetic view - Takes a causal rather than descriptive approach to the phenomenon - Allows for a broad readership, including those with only a basic biological knowledge, while maintaining scientific rigor
Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. This thematic volume features reviews on Mitochondrial genome evolution. Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology This thematic volume features reviews on mitochondrial genome evolution
Invertebrates have proven to be extremely useful model systems for gaining insights into the neural and molecular mechanisms of sensory processing, motor control and higher functions such as feeding behavior, learning and memory, navigation, and social behavior. A major factor in their enormous contributions to neuroscience is the relative simplicity of invertebrate nervous systems. In addition, some invertebrates, primarily the molluscs, have large cells, which allow analyses to take place at the level of individually identified neurons. Individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate model systems such as Drosophila and Caenorhabditis elegans offer tremendous advantages for obtaining insights into the neuronal bases of behavior through the application of genetic approaches. The Oxford Handbook of Invertebrate Neurobiology reviews the many neurobiological principles that have emerged from invertebrate analyses, such as motor pattern generation, mechanisms of synaptic transmission, and learning and memory. It also covers general features of the neurobiology of invertebrate circadian rhythms, development, and regeneration and reproduction. Some neurobiological phenomena are species-specific and diverse, especially in the domain of the neuronal control of locomotion and camouflage. Thus, separate chapters are provided on the control of swimming in annelids, crustaea and molluscs, locomotion in hexapods, and camouflage in cephalopods. Unique features of the handbook include chapters that review social behavior and intentionality in invertebrates. A chapter is devoted to summarizing past contributions of invertebrates to the understanding of nervous systems and identifying areas for future studies that will continue to advance that understanding.
One of the major questions in the evolution of animals is the transition from unicellular to multicellular organization, which resulted in the emergence of Metazoa through a hypothetical Urmetazoa. The Comparative Embryology of Sponges contains abundant original and literary data on comparative embryology and morphology of the Porifera (Sponges), a group of 'lower Metazoa'. On the basis of this material, original typization of the development of Sponges is given and the problems concerning origin and evolution of Porifera and their ontogenesis are discussed. A morphogenetic interpretation of the body plan development during embryogenesis, metamorphosis and asexual reproduction in Sponges is proposed. Special attention is given to the analysis of characteristic features of the ontogenesis in Porifera. The book pursues three primary goals: 1) generalization of all existing information on individual development of sponges, its classification and a statement according to taxonomical structure of Porifera; 2) revealing of heterogeneity of morphogenesis and peculiarities of ontogeneses in various clades of Porifera, and also their correlations with the organization, both adult sponges, and their larvae; 3) revealing homology of morphogeneses in both Porifera and Eumetazoa, testifying to the general evolutionary roots of multicellular animals, and peculiar features of sponges' morphogeneses and ontogenesis. This book will be of interest to embryologists, zoologists, morphologists and researchers in evolutionary biology.