Download Free The Chemistry Of Solid Wood Book in PDF and EPUB Free Download. You can read online The Chemistry Of Solid Wood and write the review.

This 15-chapter book is divided into four sections that discuss wood's structure and basic chemistry, its properties and reactivity, and its surface and degradation chemistry. The very basis of how wood is formed and the structure it assumes during this growth are given in the first section. Various wood science terms are defined and discussed thoroughly to give a clear and adequate foundation for the rest of the book. Wood water relationship important in almost any wood applications- are also discussed in this section. The subsequent three sections discuss relations and chemistry important for the beginning wood chemist to understand. These topics include wood's cell wall components, strength, interaction with preservatives, and adhesion. Wood polymer materials, wood surface activation, weathering and protection, and pyrolysis and fire retardancy are topics also embraced.
Modern forest products research had its start hardly fifty years ago. Today we are in a position to apply the title "wood science" to the field of wood technology that is based on scientific investigation, theoretical as well as experimental. It is this research that fosters new uses for wood as a raw material and that creates the foundation for new industries for the manufacture of wood-base materials such as plywood, laminated products, particle and fiber board and sand wich construction. Wood technology in its broadest sense combines the disciplines of wood anatomy, biology, chemistry, physics and mechanical technology. It is through this interdisciplinary approach that progress has been made in wood seasoning, wood preservation methods, wood machining, surfacing and gluing, and in the many other processes applied in its utilization. In 1936 the senior author published a book entitled, "Technologie des Holzes", which was a first approach to a universal reference book on wood technology. The first edition of Volume I of the Textbook of Wood Technology, co-authored by H. P. BROWN, A. J. P AN SHIN , and C. C. FORSAITH, was published in 1948. An indication of the rapid development of this field can be gained from the fact that the second edition of "Technologie des Holzes und der Holzwerkstoffe", completely revised, was needed by 1951. It contains 2233 pages compared with the 764 pages of the 1936 edition.
The degradable nature of high-performance, wood-based materials is an attractive advantage when considering environmental factors such as sustainability, recycling, and energy/resource conservation. The Handbook of Wood Chemistry and Wood Composites provides an excellent guide to the latest concepts and technologies in wood chemistry and bio-based composites. The book analyzes the chemical composition and physical properties of wood cellulose and its response to natural processes of degradation. It describes safe and effective chemical modifications to strengthen wood against biological, chemical, and mechanical degradation without using toxic, leachable, or corrosive chemicals. Expert researchers provide insightful analyses of the types of chemical modifications applied to polymer cell walls in wood, emphasizing the mechanisms of reaction involved and resulting changes in performance properties. These include modifications that increase water repellency, fire retardancy, and resistance to ultraviolet light, heat, moisture, mold, and other biological organisms. The text also explores modifications that increase mechanical strength, such as lumen fill, monomer polymer penetration, and plasticization. The Handbook of Wood Chemistry and Wood Composites concludes with the latest applications, such as adhesives, geotextiles, and sorbents, and future trends in the use of wood-based composites in terms of sustainable agriculture, biodegradability and recycling, and economics. Incorporating over 30 years of teaching experience, the esteemed editor of this handbook is well-attuned to educational demands as well as industry standards and research trends.
This book will focus on lignocellulosic fibres as a raw material for several applications. It will start with wood chemistry and morphology. Then, some fibre isolation processes will be given, before moving to composites, panel and paper manufacturing, characterization and aging.
This volume emphasizes the growing need for wood products with advanced engineering properties. It details the fundamental principles of cellulose technology and presents current techniques to modifying the basic chemistry of lignocellulosic materials. The work: discusses the cost-efficient use of cellulose derivatives in a variety of commodities; highlights the chemical modification of wood by methods such as etherification, esterification and thermoplasticization; considers recent progress in the lignocellulosic liquefaction of wood; and more.
Wood products used in exterior applications must be protected against biodeterioration. Traditionally, wood products used CCA or the older inexpensive organic biocides, but environmental, disposal and governmental regulations have resulted in a rapid and dramatic worldwide shift. This book covers the many steps involved in developing a wood preservative and gives overviews on modified wood, wood deterioration, worldwide trends in wood protections, and mold in homes.
An up-to-date compilation of the theoretical background and practical procedures involved in lignin characterization. Whenever possible, the procedures are presented in sufficient detail to enable the reader to perform the analysis solely by following the step-by-step description. The advantages and limitations of individual methods are discussed and, more importantly, illustrated by typical analytical data in comparison to results obtained from other methods. This handbook serves the need of researchers and other professionals in academia, the pulp and paper industry as well as allied industries. It is equally useful for those with no previous experience in lignin or lignocellulosics.
This text details the principal concepts and developments in wood science, chemistry and technology. It includes new chapters on the chemical synthesis of cellulose and its technology, preservation of wood resources and the conservation of waterlogged wood.
This book is the first to combine computational material science and modeling of molecular solid states for pharmaceutical industry applications. • Provides descriptive and applied state-of-the-art computational approaches and workflows to guide pharmaceutical solid state chemistry experiments and to support/troubleshoot API solid state selection • Includes real industrial case examples related to application of modeling methods in problem solving • Useful as a supplementary reference/text for undergraduate, graduate and postgraduate students in computational chemistry, pharmaceutical and biotech sciences, and materials science