Download Free The Chemistry Of Cosmic Dust Book in PDF and EPUB Free Download. You can read online The Chemistry Of Cosmic Dust and write the review.

It has been firmly established over the last quarter century that cosmic dust plays important roles in astrochemistry. The consequences of these roles affect the formation of planets, stars and even galaxies. Cosmic dust has been a controversial topic but there is now a considerable measure of agreement as to its nature and roles in astronomy, and its initiation of astrobiology. The subject has stimulated an enormous research effort, with researchers in many countries now involved in laboratory research and in ab initio computations. This is the first book devoted to a study of the chemistry of cosmic dust, presenting current thinking on the subject distilled from many publications in surface and solid-state science, and in astronomy. The authors discuss the nature of dust, its formation and evolution, the chemistry it can promote on its surfaces, and the consequences of these functions. The purpose of this book is to review current understanding and to indicate where future work is required. Mainly intended for researchers in the field of astrochemistry, the book could also be used as the basis of a course for postgraduate students who have an interest in astrochemistry.
Dust is widespread in the galaxy. To astronomers studying stars it may be just an irritating fog, but it is becoming widely recognized that cosmic dust plays an active role in astrochemistry. Without dust, the galaxy would have evolved differently, and planetary systems like ours would not have occurred. To explore and consolidate this active area of research, Dust and Chemistry in Astronomy covers the role of dust in the formation of molecules in the interstellar medium, with the exception of dust in the solar system. Each chapter provides thorough coverage of our understanding of interstellar dust, particularly its interaction with interstellar gas. Aimed at postgraduate researchers, the book also serves as a thorough review of this significant area of astrophysics for practicing astronomers and graduate students.
Solid particles are followed from their creation through their evolution in the Galaxy to their participation in the formation of solar systems like our own, these being now clearly deduced from observations by the Hubble Space Telescope as well as by IR and visual observations of protostellar disks, like that of the famous Beta Pictoris object. The most recent observational, laboratory and theoretical methods are examined in detail. In our own solar system, studies of meteorites, comets and comet dust reveal many features that follow directly from the interstellar dust from which they formed. The properties of interstellar dust provide possible keys to its origin in comets and asteroids and its ultimate origin in the early solar system. But this is a continuing story: what happens to the solid particles in space after they emerge from stellar sources has important scientific consequences since it ultimately bears on our own origins - the origins of solar systems and, especially, of our own earth and life in the universe.
Optics of Cosmic Dust describes what we currently know about cosmic dust, how we know it, and the research efforts undertaken to provide that knowledge. Areas treated include observational information, dust morphology and chemistry, light-scattering models, characterisation methodologies, and backscatter polarisation and dynamics. Suitable as an introductory text, the book is also a reference guide for the advanced researcher.
Volume 1 provides a broad overview of the chemistry of the solar system. It includes chapters on the origin of the elements and solar system abundances, the solar nebula and planet formation, meteorite classification, the major types of meteorites, important processes in early solar system history, geochemistry of the terrestrial planets, the giant planets and their satellite, comets, and the formation and early differentiation of the Earth. This volume is intended to be the first reference work one would consult to learn about the chemistry of the solar system.Reprinted individual volume from the acclaimed Treatise on Geochemistry (10 Volume Set, ISBN 0-08-043751-6, published in 2003)
Without interstellar dust, the Universe as we see it today would not exist. Yet at first we considered this vital ingredient merely an irritating fog that prevented a clear view of the stars and nebulae in the Milky Way and other galaxies. We now know that interstellar dust has essential roles in the physics and chemistry of the formation of stars and planetary systems, the creation of the building blocks of life, and in the movement of those molecules to new planets. This is the story in this book. After introducing the materials this interstellar dust is made of, the authors explain the range of sizes and shapes of the dust grains in the Milky Way galaxy and the life cycle of dust, starting from the origins of dust grains in stellar explosions through to their turbulent destruction. Later on we see the variety of processes in interstellar space involving dust and the events there that cause the dust to change in ways that astronomers and astrobiologists can use to indirectly observe those events. This book is written for a general audience, concentrating on ideas rather than detailed mathematics and chemical formulae, and is the first time interstellar dust has been discussed at an accessible level.
Introducing astrochemistry to a wide audience, this book describes how molecules formed in chemical reactions occur in a range of environments in interstellar and circumstellar space, from shortly after the Big Bang up to the present epoch. Stressing that chemistry in these environments needs to be driven, it helps identify these drivers and the various chemical networks that operate giving rise to signature molecules that enable the physics of the region to be better understood. The book emphasises, in a non-mathematical way, the chemistry of the Milky Way Galaxy and its planet-forming regions, describes how other galaxies may have rather different chemistries and shows how chemistry was important even in the Early Universe when most of the elements had yet to be formed. This book will appeal to anyone with a general interest in chemistry, from students to professional scientists working in interdisciplinary areas and non-scientists fascinated by the evolving and exciting story of chemistry in the cosmos.
Publisher Description
Cosmochemistry is a rapidly evolving field of planetary science and the second edition of this classic text reflects the exciting discoveries made over the past decade from new spacecraft missions. Topics covered include the synthesis of elements in stars, behaviour of elements and isotopes in the early solar nebula and planetary bodies, and compositions of extra-terrestrial materials. Radioisotope chronology of the early Solar System is also discussed, as well as geochemical exploration of planets by spacecraft, and cosmochemical constraints on the formation of solar systems. Thoroughly updated throughout, this new edition features significantly expanded coverage of chemical fractionation and isotopic analyses; focus boxes covering basic definitions and essential background material on mineralogy, organic chemistry and quantitative topics; and a comprehensive glossary. An appendix of analytical techniques and end-of-chapter review questions, with solutions available at www.cambridge.org/cosmochemistry2e, also contribute to making this the ideal teaching resource for courses on the Solar System's composition as well as a valuable reference for early career researchers.