Download Free The Characterization Of The Gamma Ray Signal From The Central Milky Way Book in PDF and EPUB Free Download. You can read online The Characterization Of The Gamma Ray Signal From The Central Milky Way and write the review.

Past studies have identified a spatially extended excess of ~1-3 GeV gamma rays from the region surrounding the Galactic Center, consistent with the emission expected from annihilating dark matter. We revisit and scrutinize this signal with the intention of further constraining its characteristics and origin. By applying cuts to the Fermi event parameter CTBCORE, we suppress the tails of the point spread function and generate high resolution gamma-ray maps, enabling us to more easily separate the various gamma-ray components. Within these maps, we find the GeV excess to be robust and highly statistically significant, with a spectrum, angular distribution, and overall normalization that is in good agreement with that predicted by simple annihilating dark matter models. For example, the signal is very well fit by a 31-40 GeV dark matter particle annihilating to b quarks with an annihilation cross section of sigma v = (1.4-2.0) x 10^-26 cm^3/s (normalized to a local dark matter density of 0.3 GeV/cm^3). Furthermore, we confirm that the angular distribution of the excess is approximately spherically symmetric and centered around the dynamical center of the Milky Way (within ~0.05 degrees of Sgr A*), showing no sign of elongation along or perpendicular to the Galactic Plane. The signal is observed to extend to at least 10 degrees from the Galactic Center, disfavoring the possibility that this emission originates from millisecond pulsars.
Dark Matter, Dark Energy and Dark Gravity make life possible!This book for the lay reader provides a summary of the latest astrophysical observational results and theoretical insights into what we know and what we hope to learn about dark matter, dark energy, and dark gravity.How did the profound beauty of our Earth, our Solar System, our Milky Way galaxy and indeed our universe unfold? Dark matter, dark energy, and dark gravity have made all the difference in how the universe has developed, and have been key to creating the overall environment that makes life possible. We have only recently developed the ability to begin unlocking their secrets, thus providing a deeper insight into how a universe of our type is possible. It seems that because of dark matter, dark energy and dark (weak) gravity, our universe has the right attributes for the development of complex structure and the evolution of intelligent life that can engage in the quest to understand our world. These "dark" or more hidden attributes of the cosmos have very good outcomes.In particular, the existence of dark matter makes it easier to form complex structures, including galaxies, stars and planets through gravitational collapse of denser regions of the universe. Planets are the most suitable abodes for the development of life. Dark energy acts to extend the lifetime of the universe by counteracting gravity and driving continued expansion of the universe.Even as far back as the 1930s there has been evidence that most of the matter in the universe was not visible via electromagnetic radiation (optical light, radio waves, etc.). By the last few decades of the 20th century, the case for a considerable amount of this dark matter was very strong. It is the second largest contributor to the total mass-energy of the universe. We don't know what it is and there are various candidates to explain it; nevertheless we see the gravitational effects of dark matter everywhere on the largest scales. Recent observational results indicate that dark matter dominates by a factor of 6 relative to the ordinary matter that makes up stars, planets, and living things.We now know that the major contributor to the mass-energy of the universe is not the substantial dark matter, but the 'newer' so-called dark energy. Dark energy acts to some extent as a negative gravity, and for the last several billion years has driven the expansion of the universe to a faster and faster pace, overcoming even the gravitational effect of dark matter. We have a general idea that it is the irreducible energy found in every volume of space, even in the absence of matter - in the vacuum. We don't understand why it takes the value that it does, one that is small in quantum particle physics terms, but nevertheless is of great significance on the large cosmological scale of the universe. The third important aspect to consider is not a mass-energy component, but the nature of gravity and space-time. The big question here is - why is gravity so relatively weak, as compared to the other 3 forces of nature? These 3 forces are the electromagnetic force, the strong nuclear force, and the weak nuclear force. Gravity is different - it has a dark or hidden side. It may very well operate in extra dimensions beyond the normal 4 dimensions of space-time that we can observe. This is what we mean in this book by "dark gravity".
On July 23, 1999, the Chandra X-Ray Observatory, the most powerful X-ray telescope ever built, was launched aboard the space shuttle Columbia. Since then, Chandra has given us a view of the universe that is largely hidden from telescopes sensitive only to visible light. In Chandra's Cosmos, the Smithsonian Astrophysical Observatory's Chandra science spokesperson Wallace H. Tucker uses a series of short, connected stories to describe the telescope's exploration of the hot, high-energy face of the universe. The book is organized in three parts: "The Big," covering the cosmic web, dark energy, dark matter, and massive clusters of galaxies; "The Bad," exploring neutron stars, stellar black holes, and supermassive black holes; and "The Beautiful," discussing stars, exoplanets, and life. Chandra has imaged the spectacular, glowing remains of exploded stars and taken spectra showing the dispersal of their elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way and traced the separation of dark matter from normal matter in the collision of galaxies, contributing to both dark matter and dark energy studies. Tucker explores the implications of these observations in an entertaining, informative narrative aimed at space buffs and general readers alike.
Searching for Dark Matter with Cosmic Gamma Rays summarizes the evidence for dark matter and what we can learn about its particle nature using cosmic gamma rays. It has almost been 100 years since Fritz Zwicky first detected hints that most of the matter in the Universe that doesn't directly emit or reflect light. Since then, the observational evidence for dark matter has continued to grow. Dark matter may be a new kind of particle that is governed by physics beyond our Standard Model of particle physics. In many models, dark matter annihilation or decay produces gamma rays. There are a variety of instruments observing the gamma-ray sky from tens of MeV to hundreds of TeV. Some make deep, focused observations of small regions, while others provide coverage of the entire sky. Each experiment offers complementary sensitivity to dark matter searches in a variety of target sizes, locations, and dark matter mass scales. We review results from recent gamma-ray experiments including anomalies some have attributed to dark matter. We also discuss how our gamma-ray observations complement other dark matter searches and the prospects for future experiments.
This thesis covers several theoretical aspects of WIMP (weakly interacting massive particles) dark matter searches, with a particular emphasis on colliders. It mainly focuses on the use of effective field theories as a tool for Large Hadron Collider (LHC) searches, discussing in detail the issue of their validity, and on simplified dark matter models, which are receiving a growing attention from the physics community. It highlights the theoretical consistency of simplified models, which is essential in order to correctly exploit their potential and for them to be a common reference when comparing results from different experiments. This thesis is of interest to researchers (both theorists and experimentalists) in the field of dark matter searches, and offers a comprehensive introduction to dark matter and to WIMP searches for students and non-experts.
The GLAST satellite mission will study the gamma ray sky with considerably greater exposure than its predecessor EGRET. In addition, it will be capable of measuring the arrival directions of gamma rays with much greater precision. These features each significantly enhance GLAST's potential for identifying gamma rays produced in the annihilations of dark matter particles. The combined use of spectral and angular information, however, is essential if the full sensitivity of GLAST to dark matter is to be exploited. In this paper, we discuss techniques for separating dark matter annihilation products from astrophysical backgrounds, focusing on the Galactic Center region, and perform a forecast for such an analysis. We consider both point-like and diffuse astrophysical backgrounds and model them using a realistic point-spread-function for GLAST. While the results of our study depend on the specific characteristics of the dark matter signal and astrophysical backgrounds, we find that in many scenarios it is possible to successfully identify dark matter annihilation radiation, even in the presence of significant astrophysical backgrounds.
The three neutrinos are ghostly elementary particles that exist all across the Universe. Though every second billions of them fly through us, they are extremely hard to detect. We used to think they had no mass, but recently discovered that in fact they have a tiny mass. The quest for the neutrino mass scale and mass ordering (specifying how the three masses are distributed) is an extremely exciting one, and will open the door towards new physics operating at energy scales we can only ever dream of reaching on Earth. This thesis explores the use of measurements of the Cosmic Microwave Background (the oldest light reaching us, a snapshot of the infant Universe) and maps of millions of galaxies to go after the neutrino mass scale and mass ordering. Neutrinos might teach us something about the mysterious dark energy powering the accelerated expansion of the Universe, or about cosmic inflation, which seeded the initial conditions for the Universe. Though extremely baffling, neutrinos are also an exceptionally exciting area of research, and cosmological observations promise to reveal a great deal about these elusive particles in the coming years.
A graduate-level introduction to the interface between particle physics, astrophysics, and cosmology This book explores the exciting interface between the fields of cosmology, high-energy astrophysics, and particle physics, at a level suitable for advanced undergraduate- to graduate-level students as well as active researchers. Without assuming a strong background in particle physics or quantum field theory, the text is designed to be accessible to readers from a range of backgrounds and presents both fundamentals and modern topics in a modular style that allows for flexible use and easy reference. It offers coverage of general relativity and the Friedmann equations, early universe thermodynamics, recombination and the cosmic microwave background, Big Bang nucleosynthesis, the origin and detection of dark matter, the formation of large-scale structure, baryogenesis and leptogenesis, inflation, dark energy, cosmic rays, neutrino and gamma-ray astrophysics, supersymmetry, Grand Unified Theories, sterile neutrinos, and axions. The book also includes numerous worked examples and homework problems, many with solutions. Particle Cosmology and Astrophysics provides readers with an invaluable entrée to this cross-disciplinary area of research and discovery. Accessible to advanced undergraduate to graduate students, as well as researchers in cosmology, high-energy astrophysics, and particle physics Does not assume a strong background in particle physics or quantum field theory and contains two chapters specifically for readers with no background in particle physics Broad scope, covering many topics across particle physics, astrophysics, and particle cosmology Modular presentation for easy reference and flexible use Provides more than 200 homework problems, many with solutions Ideal for course use or self-study and reference
The ICGAC-12 aimed to serve as a common platform around the Asia-Pacific region for the exchange and communication among all researchers in the fields of gravitation, astrophysics and cosmology. The scope covered in the conference includes dark matter, dark energy, experimental study of gravity, black holes, quantum Yang-Mills gravity, GR extension, variation of constants, fundamental physics space projects, relativistic astrophysics, white dwarfs, neutron stars, and gamma ray bursts.
This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed “Full Likelihood”, that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.