Download Free The Characterization Of Synthetic Polymers By Means Of Solid State Nmr Methods Book in PDF and EPUB Free Download. You can read online The Characterization Of Synthetic Polymers By Means Of Solid State Nmr Methods and write the review.

Since the introduction of FT-NMR spectroscopy around five decades ago, NMR has achieved significant advances in hardware and methodologies, accompanied with the enhancement of spectral resolution and signal sensitivity. Rapid developments in the polymers field mean that accurate and quantitative characterization of polymer structures and dynamics is the keystone for precisely regulating and controlling the physical and chemical properties of the polymer. This book specifically focuses on NMR investigation of complex polymers for the polymer community as well as NMR spectroscopists, and will push the development of both fields. It covers the latest advances, for example high field DNP and ultrafast MAS methodologies, and show how these novel NMR methods characterize various synthetic and natural polymers.
Pt. A: NMR and other Spectroscopic Methods. Pt. B: Mechanical Methods
The chapters in this collection are from papers which were presented at a symposium on solid-state NMR of polymers. A two-part program on available NMR techniques applicable to solid polymer analysis was presented at the 3rd Chemical Congress of North American held in Toronto, Ontario, June 5-10,1988. The program was sponsored by the Division of Polymer Chemistry with support provided by the Division, its Industrial Sponsors, and the Donors of the Petroleum Research Fund administered by the American Chemical Society. Co-organizers included Professor Colin Fyfe of the University of British Columbia (Vancouver, Canada), Professor Hans Spiess of the Max Planck Institut fur Polymerforschung (Mainz, West Germany), and myself. The full-day tutorial, which was free to registered attendees, covered the range of topics. The purpose of the tutorial was to provide a basic introduction to the field so that newcomers to its present and future applications could develop sufficient understanding to learn effectively from the subsequent symposium. The first talk attempted to give listeners a feel for the way a novice spectroscopist can learn to use the various NMR techniques to explore his own areas of interest. Simple experiments can provide unique information about solid polymers that can be useful in interpreting synthetic results and in relating solid-state conformation, morphology and molecular motion to physical properties.
Since the introduction of FT-NMR spectroscopy around five decades ago, NMR has achieved significant advances in hardware and methodologies, accompanied with the enhancement of spectral resolution and signal sensitivity. Rapid developments in the polymers field mean that accurate and quantitative characterization of polymer structures and dynamics is the keystone for precisely regulating and controlling the physical and chemical properties of the polymer. This book specifically focuses on NMR investigation of complex polymers for the polymer community as well as NMR spectroscopists, and will push the development of both fields. It covers the latest advances, for example high field DNP and ultrafast MAS methodologies, and show how these novel NMR methods characterize various synthetic and natural polymers.
NMR spectroscopy has emerged as one of the most important methods for the solid-state characterisation of polymers. This report gives an overview of the methods and applications of NMR to relevant polymer problems with an emphasis on how NMR can be used for materials characterisation and to understand structure-property relationships in polymers. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.
The last decade or so has seen a dramatic increase in the amount of detailed structural information available from a range of experimental techniques. Exciting new techniques such as atomic force microscopy have become widely available, while the potential of established methods like X-ray diffraction and electron microscopy has been greatly enhanced by powerful new sources and analytical methods. Progress in computing has also had a widespread impact: in areas such as neutron scattering, large data sets can now be manipulated more readily. The software supplied with commercial instruments generally provides more sophisti cated analytical facilities, while time-resolved X-ray studies rely on rapid data handling capabilities. The polymer scientist is faced with an expanding array of experimental tools for addressing both fundamental science and industrial problems. This work reviews some recent developments in structural techniques, with the aim of presenting the current 'state of the art' in a selection of areas.
Pt. A: NMR and other Spectroscopic Methods. Pt. B: Mechanical Methods
Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques. Introduces a range of advanced characterization methods, covering aspects such as molecular weight, polydispersity, branching, composition, and tacticity Enables the reader to understand and to compare the available technique, and implement the selected technique(s), with a view to improving properties of the polymeric material Establishes a strong link between basic principles, characterization techniques, and real-life applications