Download Free The Character Concept In Evolutionary Biology Book in PDF and EPUB Free Download. You can read online The Character Concept In Evolutionary Biology and write the review.

Almost all evolutionary biologists, indeed all biologists, use particular features to study life. These characteristics or features used by evolutionary biologists are used in a particular way to unravel a tangled evolutionary history, document the rate of evolutionary change, or as evidence of biodiversity. "Characters" are the "data" of evolutionary biology and they can be employed differently in research providing both opportunities and limitations. The Character Concept in Evolutionary Biology is about characters, their use, how different sorts of characters are limited, and what are appropriate methods for character analysis. Leading evolutionary biologists from around the world are contributors to this authoritative review of the "character concept." Because characters and the conception of characters are central to all studies of evolution, and because evolution is the central organizing principle of biology, this book will appeal to a wide cross-section of biologists. Focuses upon "characters" -- fundamental data for evolutionary biology Covers the myriad ways in which characters are defined, described, and distinguished Includes historical, morphological, molecular, behavioral, and philosophical perspectives
The Darwinian theory of evolution is itself evolving and this book presents the details of the core of modern Darwinism and its latest developmental directions. The authors present current scientific work addressing theoretical problems and challenges in four sections, beginning with the concepts of evolution theory, its processes of variation, heredity, selection, adaptation and function, and its patterns of character, species, descent and life. The second part of this book scrutinizes Darwinism in the philosophy of science and its usefulness in understanding ecosystems, whilst the third section deals with its application in disciplines beyond the biological sciences, including evolutionary psychology and evolutionary economics, Darwinian morality and phylolinguistics. The final section addresses anti-Darwinism, the creationist view and issues around teaching evolution in secondary schools. The reader learns how current experimental biology is opening important perspectives on the sources of variation, and thus of the very power of natural selection. This work examines numerous examples of the extension of the principle of natural selection and provides the opportunity to critically reflect on a rich theory, on the methodological rigour that presides in its extensions and exportations, and on the necessity to measure its advantages and also its limits. Scholars interested in modern Darwinism and scientific research, its concepts, research programs and controversies will find this book an excellent read, and those considering how Darwinism might evolve, how it can apply to the human sciences and other disciplines beyond its origins will find it particularly valuable. Originally produced in French (Les Mondes Darwiniens), the scope and usefulness of the book have led to the production of this English text, to reach a wider audience. This book is a milestone in the impressive penetration by Francophone scholars into the world of Darwinian science, its historiography and philosophy over the last two decades. Alex Rosenberg, R. Taylor Cole Professor of Philosophy, Duke University Until now this useful and comprehensive handbook has only been available to francophones. Thanks to this invaluable new translation, this collection of insightful and original essays can reach the global audience it deserves. Tim Lewens, University of Cambridge
A major synthesis of homology, written by a top researcher in the field Homology—a similar trait shared by different species and derived from common ancestry, such as a seal's fin and a bird’s wing—is one of the most fundamental yet challenging concepts in evolutionary biology. This groundbreaking book provides the first mechanistically based theory of what homology is and how it arises in evolution. Günter Wagner, one of the preeminent researchers in the field, argues that homology, or character identity, can be explained through the historical continuity of character identity networks—that is, the gene regulatory networks that enable differential gene expression. He shows how character identity is independent of the form and function of the character itself because the same network can activate different effector genes and thus control the development of different shapes, sizes, and qualities of the character. Demonstrating how this theoretical model can provide a foundation for understanding the evolutionary origin of novel characters, Wagner applies it to the origin and evolution of specific systems, such as cell types; skin, hair, and feathers; limbs and digits; and flowers. The first major synthesis of homology to be published in decades, Homology, Genes, and Evolutionary Innovation reveals how a mechanistically based theory can serve as a unifying concept for any branch of science concerned with the structure and development of organisms, and how it can help explain major transitions in evolution and broad patterns of biological diversity.
The natural world is infinitely complex and hierarchically structured, with smaller units forming the components of progressively larger systems: molecules make up cells, cells comprise tissues and organs that are, in turn, parts of individual organisms, which are united into populations and integrated into yet more encompassing ecosystems. In the face of such awe-inspiring complexity, there is a need for a comprehensive, non-reductionist evolutionary theory. Having emerged at the crossroads of paleobiology, genetics, and developmental biology, the hierarchical approach to evolution provides a unifying perspective on the natural world and offers an operational framework for scientists seeking to understand the way complex biological systems work and evolve. Coedited by one of the founders of hierarchy theory and featuring a diverse and renowned group of contributors, this volume provides an integrated, comprehensive, cutting-edge introduction to the hierarchy theory of evolution. From sweeping historical reviews to philosophical pieces, theoretical essays, and strictly empirical chapters, it reveals hierarchy theory as a vibrant field of scientific enterprise that holds promise for unification across the life sciences and offers new venues of empirical and theoretical research. Stretching from molecules to the biosphere, hierarchy theory aims to provide an all-encompassing understanding of evolution and—with this first collection devoted entirely to the concept—will help make transparent the fundamental patterns that propel living systems.
The impact of evolutionary theory on the philosophy of science has been no less profound than its impact on the science of biology itself. Advances in this theory provide a rich set of examples for thinking about the nature of scientific explanation and the structure of science. Many of the developments in our understanding of evolution resulted from contributions by both philosophers and biologists engaging over theoretical questions of mutual interest. This volume traces some of the most influential exchanges in this field over the last few decades. Focal topics include the nature of biological functions, adaptationism as an explanatory and methodological doctrine, the levels of selection debate, the concepts of fitness and drift, and the relationship of evolutionary to developmental biology.
Covering more than 50 central terms and concepts in entries written by leading experts, this book offers an overview of this new subdiscipline of biology, providing the core insights and ideas that show how embryonic development relates to life-history evolution, adaptation, and responses to and integration with environmental factors.
Does natural selection act primarily on individual organisms, on groups, on genes, or on whole species? Samir Okasha provides a comprehensive analysis of the debate in evolutionary biology over the levels of selection, focusing on conceptual, philosophical and foundational questions. A systematic framework is developed for thinking about natural selection acting at multiple levels of the biological hierarchy; the framework is then used to help resolve outstanding issues. Considerable attention is paid to the concept of causality as it relates to the levels of selection, in particular the idea that natural selection at one hierarchical level can have effects that 'filter' up or down to other levels. Unlike previous work in this area by philosophers of science, full account is taken of the recent biological literature on 'major evolutionary transitions' and the recent resurgence of interest in multi-level selection theory among biologists. Other biological topics discussed include Price's equation, kin and group selection, the gene's eye view, evolutionary game theory, outlaws and selfish genetic elements, species and clade selection, and the evolution of individuality. Philosophical topics discussed include reductionism and holism, causation and correlation, the nature of hierarchical organization, and realism and pluralism.
The Princeton Guide to Evolution is a comprehensive, concise, and authoritative reference to the major subjects and key concepts in evolutionary biology, from genes to mass extinctions. Edited by a distinguished team of evolutionary biologists, with contributions from leading researchers, the guide contains some 100 clear, accurate, and up-to-date articles on the most important topics in seven major areas: phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society. Complete with more than 100 illustrations (including eight pages in color), glossaries of key terms, suggestions for further reading on each topic, and an index, this is an essential volume for undergraduate and graduate students, scientists in related fields, and anyone else with a serious interest in evolution. Explains key topics in some 100 concise and authoritative articles written by a team of leading evolutionary biologists Contains more than 100 illustrations, including eight pages in color Each article includes an outline, glossary, bibliography, and cross-references Covers phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society
Making Sense of Evolution explores contemporary evolutionary biology, focusing on the elements of theories—selection, adaptation, and species—that are complex and open to multiple possible interpretations, many of which are incompatible with one another and with other accepted practices in the discipline. Particular experimental methods, for example, may demand one understanding of “selection,” while the application of the same concept to another area of evolutionary biology could necessitate a very different definition. Spotlighting these conceptual difficulties and presenting alternate theoretical interpretations that alleviate this incompatibility, Massimo Pigliucci and Jonathan Kaplan intertwine scientific and philosophical analysis to produce a coherent picture of evolutionary biology. Innovative and controversial, Making Sense of Evolution encourages further development of the Modern Synthesis and outlines what might be necessary for the continued refinement of this evolving field.
How should the concept of evidence be understood? And how does the concept of evidence apply to the controversy about creationism as well as to work in evolutionary biology about natural selection and common ancestry? In this rich and wide-ranging book, Elliott Sober investigates general questions about probability and evidence and shows how the answers he develops to those questions apply to the specifics of evolutionary biology. Drawing on a set of fascinating examples, he analyzes whether claims about intelligent design are untestable; whether they are discredited by the fact that many adaptations are imperfect; how evidence bears on whether present species trace back to common ancestors; how hypotheses about natural selection can be tested, and many other issues. His book will interest all readers who want to understand philosophical questions about evidence and evolution, as they arise both in Darwin's work and in contemporary biological research.