Download Free The Changing Faces Of Glutathione A Cellular Protagonist Book in PDF and EPUB Free Download. You can read online The Changing Faces Of Glutathione A Cellular Protagonist and write the review.

Glutathione (GSH) has been described for a long time just as a defensive reagent against the action of toxic xenobiotics (drugs, pollutants, carcinogens), both directly and as a cofactor for GSH transferases. As a prototype antioxidant, it has been involved in cell protection from the noxious effect of excess oxidant stress, both directly and as a cofactor of glutathione peroxidases. In addition, it has long been known that GSH is capable of forming disulfide bonds with cysteine residues of proteins, and the relevance of this mechanism ("S-glutathionylation") in regulation of protein function has been well documented in a number of research fields. Rather paradoxically, it has also been highlighted that GSH—and notably its catabolites, as originated by metabolism by gamma-glutamyltransferase—can promote oxidative processes, by participating in metal ion-mediated reactions eventually leading to formation of reactive oxygen species and free radicals. Also, a fundamental role of GSH has been recognized in the storage and transport of nitric oxide (NO), in the form of S-nitrosoglutathione (GSNO). The significance of GSH as a major factor in regulation of cell life, proliferation, and death, can be regarded as the integrated result of all these roles, as well as of more which are emerging in diverse fields of biology and pathophysiology. Against this background, modulation of GSH levels and GSH-related enzyme activities represents a fertile field for experimental pharmacology in numerous and diverse perspectives of animal, plant and microbiologic research. This research topic includes 14 articles, i.e. 4 Opinion Articles, 6 Reviews, and 4 Original Research Articles. The contributions by several distinguished research groups, each from his own standpoint of competence and expertise, provide a comprehensive and updated view over the diverse roles, the changing faces of GSH and GSH-related enzymes in cell’s health, disease and death.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
This is the first serious attempt to synthesize all that became known of glutathione over the last three decades. The book contains an update of glutathione biosynthesis with special emphasis on its regulation in adaptive stress responses. Other chapters review glutathione transport systems and glutathione peroxidases and their differences in substrate specificities and localization. Further contributions center on the diversified roles of different glutathione-S-transferases and the roles of nitrosoglutathione and glutaredoxins - a subfamily of redoxins. The book closes with discussions of the analogous or homologous thiol metabolism in pathogens and the potential suitability of involved enzymes as drug targets. Key selling features: Summarizing the way glutathione is involved in stress responses Compiling the multiple ways glutathione affects inflammatory responses Disclosing how glutathione dampens programmed cell death such as ferroptosis Exploring the enigma of how enzymes accelerate glutathione-dependent processes Discussing how detoxification and redox regulation is mediated by glutathionylation Reviewing the ways glutaredoxins catalyze protein disulfide reduction Highlighting the medical impact of glutathione-related metabolic pathways Illustrating the role thiol metabolism of pathogens might play in drug discovery Chapter 11 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution (CC-BY) 4.0 license.
During the last 30 years it has become clearly evident that oxidative stress and free radical biology play key roles in carcinogenesis, cancer progression, cancer therapy, and normal tissue damage that limits treatment efficacy during cancer therapy. These mechanistic observations have led to the realization that free radical biology and cancer biology are two integrally related fields of investigation that can greatly benefit from cross fertilization of theoretical constructs. The current volume of scientific papers was assembled under the heading of Oxidative Stress in Cancer Biology and Therapy in order to stimulate the discussion of how the knowledge gained in the emerging field of oxidative stress in cancer biology can be utilized to more effectively design interventions to enhance therapeutic responses while causing fewer treatment limiting complications. The chapters contained in this volume provide highly informative emerging perspectives on how that selective enhancement of oxidative stress in cancerous tissues can be used as a target for enhancing therapeutic outcomes as well as how selective inhibition of oxidative stress could spare normal tissue damage and inhibit carcinogenesis. In this regard, the book represents an outstanding resource for both basic and translational scientists as well as clinicians interested in the field of oxidative stress and cancer therapy.
Oxidants, like other aspects of life, involves tradeoffs. Oxidants, whether intentionally produced or by-products of normal metabolism can either mediate a variety of critical biological processes but when present inappropriately cause extensive damage to biological molecules (DNA, proteins, and lipids). These effects can lead to either damage that is a major contributor to aging and degenerative diseases (or to other diseases such as cancer, cardiovascular disease, immune-system decline, brain dysfunction, and cataracts) or normal physiological function- tissue repair, defense against pathogens and cellular proliferation. On the other hand the body is equipped with a complex antioxidant/oxidant handling system which includes both enzymatic and nonenzymatic (i.e. small molecules such as flavonoids, ascorbate, tocopherol, and carotenoids) produced endogenously or derived from the diet. This book focuses on how the same molecules can have favorable or noxious effects depending on location, level and timing. Each chapter focuses on one particular molecule or oxidant/antioxidant system and provides a state of the art review of the current understanding regarding both positive and negative actions of the system under review.
Free radicals are constantly formed in living cells and removed by antioxidant defenses. Antioxidant enzymes are the main line of defense against free radicals in animal and plant cells. Uncontrolled generation ROS are involved in a number of human disease states, including diabetes and cancer due to disturbance in cellular and molecular processes including cell growth, differentiation and proliferation. When cells are exposed to oxidative stress a defense system endorses the expression and regulation of number of antioxidant enzymes as a defense mechanism to protect them from the damage induced by free radicals. Based on this fact, the book "Antioxidant Enzymes" was designed to overview the importance of the antioxidant enzymes in human and plant cells against toxic free radicals, their relationship with several pathophysiologic processes and their possible therapeutic application.
This volume covers data describing the role of free radicals and antioxidants in respiratory disorders, including the data that deal with clinical and pre-clinical trials. Chapters describe the relationship of oxidative stress to a number of respiratory and pulmonary conditions from a basic science and clinical perspective, including chronic obstructive pulmonary disease, asthma, acute lung injury, pulmonary hypertension, toxicity and fibrosis, cancer and asbestosis. The book also discusses the use of conventional biomarkers of oxidative stress and breath condensates as adjuncts to classical laboratory testing, the effect of antioxidants on cellular protection, as well as the development of novel antioxidant modalities.
This comprehensive edited volume collects the most recent information with up-to-date citations, on the decrease in plant productivity under climatic changes and its link with global food security. The book emphasis on the crop management practices and recent advancement in the techniques for mitigating the negative effects of climate induced biotic and abiotic stress. It brings together 19 chapters developed by eminent researchers in the area of plant and environmental sciences. Global climate change is increasingly becoming a concern for future of agriculture. High levels of inorganic and organic pollutants and climatic stress adversely affects the sensitive and complex equation of natural resources and ecosystem services. To meet the increased food demand, plant productivity needs to be enhanced, therefore this book fills in the gap and brings together information on the physiological and molecular approaches for improving crop productivity. The book is resourceful reading material for researchers, faculty members, graduate and post graduate students of plant science, agriculture, agronomy, soil science, botany, Molecular biology and environmental science.
This book focuses on new research fields of diamond, from its growth to applications. It covers growth of atomically flat diamond films, properties and applications of diamond nanoparticles, diamond nanoparticles based electrodes and their applications for energy storage and conversion (supercapacitors, CO2 conversion etc.). Diamond for biomimetic interface, all electrochemical devices for in vivo detections and photo-electrochemical degradation of environmental hazards are highlighted.