Download Free The Cell Surface In Plant Growth And Development Book in PDF and EPUB Free Download. You can read online The Cell Surface In Plant Growth And Development and write the review.

Plant cell walls are complex, dynamic cellular structures essential for plant growth, development, physiology and adaptation. Plant Cell Walls provides an in depth and diverse view of the microanatomy, biosynthesis and molecular physiology of these cellular structures, both in the life of the plant and in their use for bioproducts and biofuels. Plant Cell Walls is a textbook for upper-level undergraduates and graduate students, as well as a professional-level reference book. Over 400 drawings, micrographs, and photographs provide visual insight into the latest research, as well as the uses of plant cell walls in everyday life, and their applications in biotechnology. Illustrated panels concisely review research methods and tools; a list of key terms is given at the end of each chapter; and extensive references organized by concept headings provide readers with guidance for entry into plant cell wall literature. Cell wall material is of considerable importance to the biofuel, food, timber, and pulp and paper industries as well as being a major focus of research in plant growth and sustainability that are of central interest in present day agriculture and biotechnology. The production and use of plants for biofuel and bioproducts in a time of need for responsible global carbon use requires a deep understanding of the fundamental biology of plants and their cell walls. Such an understanding will lead to improved plant processes and materials, and help provide a sustainable resource for meeting the future bioenergy and bioproduct needs of humankind.
Water stress in plants is caused by the water deficit, as induced possibly by drought or high soil salinity. The prime consequence of water stress in plants is the disruption in the agricultural production, resulting in food shortage. The plants, however, try to adapt to the stress conditions using biochemical and physiological interventions. The edited compilation is an attempt to provide new insights into the mechanism and adaptation aspects of water stress in plants through a thoughtful mixture of viewpoints. We hope that the content of the book will be useful for the researchers working with the plant diversity-related environmental aspects and also provide suggestions for the strategists.
In plant cells, the plasma membrane is a highly elaborated structure that functions as the point of exchange with adjoining cells, cell walls and the external environment. Transactions at the plasma membrane include uptake of water and essential mineral nutrients, gas exchange, movement of metabolites, transport and perception of signaling molecules, and initial responses to external biota. Selective transporters control the rates and direction of small molecule movement across the membrane barrier and manipulate the turgor that maintains plant form and drives plant cell expansion. The plasma membrane provides an environment in which molecular and macromolecular interactions are enhanced by the clustering of proteins in oligimeric complexes for more efficient retention of biosynthetic intermediates, and by the anchoring of protein complexes to promote regulatory interactions. The coupling of signal perception at the membrane surface with intracellular second messengers also involves transduction across the plasma membrane. Finally, the generation and ordering of the external cell walls involves processes mediated at the plant cell surface by the plasma membrane. This volume is divided into three sections. The first section describes the basic mechanisms that regulate all plasma membrane functions. The second describes plasma membrane transport activity. The final section of the book describes signaling interactions at the plasma membrane. These topics are given a unique treatment in this volume, as the discussions are restricted to the plasma membrane itself as much as possible. A more complete knowledge of the plasma membrane’s structure and function is essential to current efforts to increase the sustainability of agricultural production of food, fiber, and fuel crops.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
Enzymes, lignin, proteins, cellulose, pectin, kinase.
The study of plant development in recent years has often been concerned with the effects of the environment and the possible involvement of growth substances. The prevalent belief that plant growth substances are crucial to plant development has tended to obscure rather than to clarify the underlying cellular mechanisms of development. The aim in this book is to try to focus on what is currently known, and what needs to be known, in order to explain plant development in terms that allow further experimentation at the cellular and molecular levels. We need to know where and at what level in the cell or organ the critical processes controlling development occur. Then, we will be better able to under stand how development is controlled by the genes, whether directly by the continual production of new gene transeripts or more indirectly by the genes merely defining self-regulating systems that then function autonomously. This book is not a survey of the whole of plant development but is meant to concentrate on the possible component cellular and molecular processes involved. Consequently, a basic knowledge of plant structure is assumed. The facts of plant morphogenesis can be obtained from the books listed in the General Reading seetion at the end of Chapter 1. Although references are not cited specifically in the text, the key references for each section are denoted by superscript numbers and listed in the Notes section at the end of each chapter.
Plant Cell Biology, Second Edition: From Astronomy to Zoology connects the fundamentals of plant anatomy, plant physiology, plant growth and development, plant taxonomy, plant biochemistry, plant molecular biology, and plant cell biology. It covers all aspects of plant cell biology without emphasizing any one plant, organelle, molecule, or technique. Although most examples are biased towards plants, basic similarities between all living eukaryotic cells (animal and plant) are recognized and used to best illustrate cell processes. This is a must-have reference for scientists with a background in plant anatomy, plant physiology, plant growth and development, plant taxonomy, and more. - Includes chapter on using mutants and genetic approaches to plant cell biology research and a chapter on -omic technologies - Explains the physiological underpinnings of biological processes to bring original insights relating to plants - Includes examples throughout from physics, chemistry, geology, and biology to bring understanding on plant cell development, growth, chemistry and diseases - Provides the essential tools for students to be able to evaluate and assess the mechanisms involved in cell growth, chromosome motion, membrane trafficking and energy exchange
Water Relations of Plants attempts to explain the importance of water through a description of the factors that control the plant water balance and how they affect the physiological processes that determine the quantity and quality of growth. Organized into 13 chapters, this book first discusses the functions and properties of water and the plant cell water relations. Subsequent chapters focus on measurement and control of soil water, as well as growth and functions of root. This book also looks into the water absorption, the ascent of sap, the transpiration, and the water stress and its effects on plant processes and growth. This book will be useful for students, teachers, and investigators in both basic and applied plant science, as well as for botanists, agronomists, foresters, horticulturists, soil scientists, and even laymen with an interest in plant water relations.