Download Free The Carbonic Anhydrases Current And Emerging Therapeutic Targets Book in PDF and EPUB Free Download. You can read online The Carbonic Anhydrases Current And Emerging Therapeutic Targets and write the review.

This volume assembles and integrates the wealth of diverse information that is now accumulating in this burgeoning field. The existing and potential therapeutic applications of targeting CA cover a remarkably wide-range of diseases and disorders and have generated increasing and extensive interest in recent years. Its inter-disciplinary approach embraces both the most up-to-date therapeutic application of CA-targeting and the latest research data that will provide a platform for the development of novel applications. The interested audience comprises scientists and clinicians from many relevant disciplines within science and medicine.
This volume assembles and integrates the wealth of diverse information that is now accumulating in this burgeoning field. The existing and potential therapeutic applications of targeting CA cover a remarkably wide-range of diseases and disorders and have generated increasing and extensive interest in recent years. Its inter-disciplinary approach embraces both the most up-to-date therapeutic application of CA-targeting and the latest research data that will provide a platform for the development of novel applications. The interested audience comprises scientists and clinicians from many relevant disciplines within science and medicine.
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development aims at showcasing different structure-based, ligand-based, and machine learning tools currently used in drug design. It also highlights special topics of computational drug design together with the available tools and databases. The integrated presentation of chemometrics, cheminformatics, and machine learning methods under is one of the strengths of the book.The first part of the content is devoted to establishing the foundations of the area. Here recent trends in computational modeling of drugs are presented. Other topics present in this part include QSAR in medicinal chemistry, structure-based methods, chemoinformatics and chemometric approaches, and machine learning methods in drug design. The second part focuses on methods and case studies including molecular descriptors, molecular similarity, structure-based based screening, homology modeling in protein structure predictions, molecular docking, stability of drug receptor interactions, deep learning and support vector machine in drug design. The third part of the book is dedicated to special topics, including dedicated chapters on topics ranging from de design of green pharmaceuticals to computational toxicology. The final part is dedicated to present the available tools and databases, including QSAR databases, free tools and databases in ligand and structure-based drug design, and machine learning resources for drug design. The final chapters discuss different web servers used for identification of various drug candidates. - Presents chemometrics, cheminformatics and machine learning methods under a single reference - Showcases the different structure-based, ligand-based and machine learning tools currently used in drug design - Highlights special topics of computational drug design and available tools and databases
The study of carbonic anhydrase has spanned multiple generations of scientists. Carbonic anhydrase was first discovered in 1932 by Meldrum and Roughton. Inhibition by sulfanilamide was shown in 1940 by Mann and Keilin. Even Hans Krebs contributed to early studies with a paper in 1948 showing the relationship of 25 different sulfonamides to CA inhibition. It was he who pointed out the importance of both the charged and uncharged character of these compounds for physiological experiments. The field of study that focuses on carbonic anhydrase (CA) has exploded in recent years with the identification of new families and isoforms. The CAs are metalloenzymes which are comprised of 5 structurally different families: the alpha, beta, gamma, and delta, and epsilon classes. The alpha class is found primarily in animals with several isoforms associated with human disease. The beta CAs are expressed primarily in plants and are the most divergent. The gamma CAs are the most ancient. These are structurally related to the beta CAs, but have a mechanism more similar to the alpha CAs. The delta CAs are found in marine algae and diflagellates. The epsilon class is found in prokaryotes in which it is part of the carboxysome shell perhaps supplying RuBisCO with CO2 for carbon fixation. With the excitement surrounding the discovery of disease-related CAs, scientists have redoubled their efforts to better understand structure-function relationships, to design high affinity, isotype-specific inhibitors, and to delineate signaling systems that play regulatory roles over expression and activity. We have designed the book to cover basic information of mechanism, structure, and function of the CA families. The authors included in this book bring to light the newest data with regard to the role of CA in physiology and pathology, across phylums, and in unique environmental niches.
Carbonic Anhydrase: Its Inhibitors and Activators provides a state-of-the-art overview of the latest developments and challenges in carbonic anhydrase research. Authors describe the mechanisms of action of specific inhibitors in relation to physiological function, and present previously unpublished research on CA activators. Written by a team of in
Carbonic Anhydrases provides an interdisciplinary review of the burgeoning carbonic anhydrase (CA) research area, spanning from CAs classification (biochemical and structural features) to drug design and pharmacology of CA inhibitors and activators, finally touching on the biotechnological applications of these metalloenzymes. The book adopts a clear step-by-step approach and introduction to this intricate and highly interdisciplinary field. A diverse range of chapters from international experts speak to CA classification and distribution, the mechanisms of action and drug design of inhibitors and activators, the druggability of the various isoforms in the treatment of a multitude of diseases, and threats to human health. Carbonic Anhydrases provides biology, biochemistry, and medicinal chemistry students and researchers a thorough discussion and update on the evergreen and expanding research area of CAs. - Offers a full overview of CAs' biochemical and structural features, as well as drug design and pharmacology of inhibitors and activators - Provides a thorough update on the newly identified isoforms, modulating chemotypes, and innovative biomedical applications - Describes the current biotechnological applications of CAs, including processes for CO2 capture - Features chapter contributions from international leaders in CA biology, medicinal chemistry, and pharmacology
Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes present in all kingdoms of life, as they equilibrate the reaction between three simple but essential chemical species: CO2, bicarbonate, and protons. Discovered more than 80 years ago, in 1933, these enzymes have been extensively investigated due to the biomedical application of their inhibitors, but also because they are an extraordinary example of convergent evolution, with seven genetically distinct CA families that evolved independently in Bacteria, Archaea, and Eukarya. CAs are also among the most efficient enzymes known in nature, due to the fact that the uncatalyzed hydration of CO2 is a very slow process and the physiological demands for its conversion to ionic, soluble species is very high. Inhibition of the CAs has pharmacological applications in many fields, such as antiglaucoma, anticonvulsant, antiobesity, and anticancer agents/diagnostic tools, but is also emerging for designing anti-infectives, i.e., antifungal, antibacterial, and antiprotozoan agents with a novel mechanism of action. Mitochondrial CAs are implicated in de novo lipogenesis, and thus selective inhibitors of such enzymes may be useful for the development of new antiobesity drugs. As tumor metabolism is diverse compared to that of normal cells, ultimately, relevant contributions on the role of the tumor-associated isoforms CA IX and XII in these phenomena have been published and the two isoforms have been validated as novel antitumor/antimetastatic drug targets, with antibodies and small-molecule inhibitors in various stages of clinical development. CAs also play a crucial role in other metabolic processes connected with urea biosynthesis, gluconeogenesis, and so on, since many carboxylation reactions catalyzed by acetyl-coenzyme A carboxylase or pyruvate carboxylase use bicarbonate, not CO2, as a substrate. In organisms other than mammals, e.g., plants, algae, and cyanobacteria, CAs are involved in photosynthesis, whereas in many parasites (fungi, protozoa), they are involved in the de novo synthesis of important metabolites (lipids, nucleic acids, etc.). The metabolic effects related to interference with CA activity, however, have been scarcely investigated. The present Special Issue of Metabolites aims to fill this gap by presenting the latest developments in the field of CAs and their role in metabolism.
The present book is an attempt to provide a detailed review of studies that clarify our current understanding of the role of hypoxia in the progression of primary cancer to metastatic disease. It will enable researchers to discover the critical cellular changes that occur under hypoxic conditions and play a role in metastatic dissemination, from the activation of hypoxia-inducible factors, HIF-1 and HIF-2, to the transcriptional profile changes that occur in cancer cells and promote cancer cell survival under detrimental conditions. Readers will discover the methods and challenges involved in imaging and quantifying the degree of hypoxia in a primary tumor. We will provide an understanding of the hypoxia-induced phenotypes that influence heterogeneity, alter the secretome and tumor microenvironment, modify cellular metabolism, and promote immune suppression and resistance to chemotherapy. Finally, we will uncover the therapeutic strategies that are being devised to target the hypoxic microenvironment in the hopes of preventing metastasis and improving the efficacy of standard-of-care cancer treatments. This work is an up to date source of information on the challenges and complexity of the hypoxic tumor microenvironment. Basic and translational scientists, post-doctoral fellows, graduate students, and those interested in how tumors metastasize will find this book a reference that details how hypoxia influences metastatic disease.
In-cell NMR spectroscopy is a relatively new field. Despite its short history, recent in-cell NMR-related publications in major journals indicate that this method is receiving significant general attention. This book provides the first informative work specifically focused on in-cell NMR. It details the historical background of in-cell NMR, host cells for in-cell NMR studies, methods for in-cell biological techniques and NMR spectroscopy, applications, and future perspectives. Researchers in biochemistry, biophysics, molecular biology, cell biology, structural biology as well as NMR analysts interested in biological applications will all find this book valuable reading.