Download Free The Carbon Chain In Carbon Dioxide Industrial Utilization Technologies Book in PDF and EPUB Free Download. You can read online The Carbon Chain In Carbon Dioxide Industrial Utilization Technologies and write the review.

A shift towards implementation of renewable energy has disadvantages, such as power availability, storage capacity, and accompanying costs, and therefore the potential of clean fossil fuel technologies to ensure the stability of electricity generation needs to be reconsidered until these challenges will be overcome. These clean technologies can help prevent the greenhouse effect and, at the same time, guarantee energy security, as coal is a widespread, price-stable raw material that is available in large quantities. This book focuses on the carbon chain, starting from the formation of CO2, through its capture, possible cleaning, to the production of useful products such as dimethylether, methanol, and carbonated cement prefabricates. The comprehensive case study presents the research results of an international team established within the "CCS-CCU technology for carbon footprint reduction using bio-adsorbents" (BIOCO2) project.
A shift towards implementation of renewable energy has disadvantages, such as power availability, storage capacity, and accompanying costs, and therefore the potential of clean fossil fuel technologies to ensure the stability of electricity generation needs to be reconsidered until these challenges will be overcome. These clean technologies can help prevent the greenhouse effect and, at the same time, guarantee energy security, as coal is a widespread, price-stable raw material that is available in large quantities. This book focuses on the carbon chain, starting from the formation of CO2, through its capture, possible cleaning, to the production of useful products such as dimethylether, methanol, and carbonated cement prefabricates. The comprehensive case study presents the research results of an international team established within the "CCS-CCU technology for carbon footprint reduction using bio-adsorbents" (BIOCO2) project.
Carbon Dioxide Utilisation: Closing the Carbon Cycle explores areas of application such as conversion to fuels, mineralization, conversion to polymers, and artificial photosynthesis as well as assesses the potential industrial suitability of the various processes. After an introduction to the thermodynamics, basic reactions, and physical chemistry of carbon dioxide, the book proceeds to examine current commercial and industrial processes, and the potential for carbon dioxide as a green and sustainable resource. While carbon dioxide is generally portrayed as a "bad" gas, a waste product, and a major contributor to global warming, a new branch of science is developing to convert this "bad" gas into useful products. This book explores the science behind converting CO2 into fuels for our cars and planes, and for use in plastics and foams for our homes and cars, pharmaceuticals, building materials, and many more useful products. Carbon dioxide utilization is a rapidly expanding area of research that holds a potential key to sustainable, petrochemical-free chemical production and energy integration. - Accessible and balanced between chemistry, engineering, and industrial applications - Informed by blue-sky thinking and realistic possibilities for future technology and applications - Encompasses supply chain sustainability and economics, processes, and energy integration
This book focuses on an important technology for mineralizing and utilizing CO2 instead of releasing it into the atmosphere. CO2 mineralization and utilization demonstrated in the waste-to-resource supply chain can “reduce carbon dependency, promote resource and energy efficiency, and lessen environmental quality degradation,” thereby reducing environmental risks and increasing economic benefits towards Sustainable Development Goals (SDG). In this book, comprehensive information on CO2 mineralization and utilization via accelerated carbonation technology from theoretical and practical considerations was presented in 20 Chapters. It first introduces the concept of the carbon cycle from the thermodynamic point of view and then discusses principles and applications regarding environmental impact assessment of carbon capture, storage and utilization technologies. After that, it describes the theoretical and practical considerations for “Accelerated Carbonation (Mineralization)” including analytical methods, and systematically presents the carbonation mechanism and modeling (process chemistry, reaction kinetics and mass transfer) and system analysis (design and analysis of experiments, life cycle assessment and cost benefit analysis). It then provides physico-chemical properties of different types of feedstock for CO2 mineralization and then explores the valorization of carbonated products as green materials. Lastly, an integral approach for waste treatment and resource recovery is introduced, and the carbonation system is critically assessed and optimized based on engineering, environmental, and economic (3E) analysis. The book is a valuable resource for readers who take scientific and practical interests in the current and future Accelerated Carbonation Technology for CO2 Mineralization and Utilization.
In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year. Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.
This edited book provides an in-depth overview of carbon dioxide (CO2) transformations to sustainable power technologies. It also discusses the wide scope of issues in engineering avenues, key designs, device fabrication, characterizations, various types of conversions and related topics. It includes studies focusing on the applications in catalysis, energy conversion and conversion technologies, etc. This is a unique reference guide, and one of the detailed works is on this technology. The book is the result of commitments by leading researchers from various backgrounds and expertise. The book is well structured and is an essential resource for scientists, undergraduate, postgraduate students, faculty, R&D professionals, energy chemists and industrial experts.
Environmental Materials and Waste: Circular Economy and Pollution Abatement, Second Edition, contains the latest information on environmental sustainability as a wide variety of natural resources are increasingly being exploited to meet the demands of a worldwide growing population and economy. The book takes a multidisciplinary approach to fully realize the number of by-products which can be remanufactured, providing the foundation needed across disciplines to tackle this issue. As awareness and opportunities to recover valuable resources from process and bleed streams is gaining interest, sustainable recovery of environmental materials, including wastewater, offers tremendous opportunity to combine profitable and sustainable production. In this 2nd edition, operational principles of circular economy for sustainable development with reference to environmental waste shall be covered. Circular economy research is discussed in depth as it has gained considerable momentum in the scientific literature thus far, and both conceptual debates and the creation of useful implementation strategies are still in their infancy. Although circular systems are now being implemented, this book will emphasize the importance to properly consider and convert circular economy goals and principles into actions. As a whole, this 2nd edition of Environmental Materials and Waste covers a wide range of issues that must be covered in order to improve environmental sustainability. - Presents a state-of-the-art guide to environmental sustainability - Provides an overview of the field, highlighting recent and emerging issues in environmental resource recovery that cover a wide array of by-products for remanufacture potential - Details a multidisciplinary approach to fully realize the number of by-products which can be remanufactured, providing the foundation needed across disciplines to tackle these global issues
Advances in Carbon Management Technologies comprises 43 chapters contributed by experts from all over the world. Volume 1 of the book, containing 23 chapters, discusses the status of technologies capable of yielding substantial reduction of carbon dioxide emissions from major combustion sources. Such technologies include renewable energy sources that can replace fossil fuels and technologies to capture CO2 after fossil fuel combustion or directly from the atmosphere, with subsequent permanent long-term storage. The introductory chapter emphasizes the gravity of the issues related to greenhouse gas emissionglobal temperature correlation, the state of the art of key technologies and the necessary emission reductions needed to meet international warming targets. Section 1 deals with global challenges associated with key fossil fuel mitigation technologies, including removing CO2 from the atmosphere, and emission measurements. Section 2 presents technological choices for coal, petroleum, and natural gas for the purpose of reducing carbon footprints associated with the utilization of such fuels. Section 3 deals with promising contributions of alternatives to fossil fuels, such as hydropower, nuclear, solar photovoltaics, and wind. Chapter 19 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.
Horizons in Sustainable Industrial Chemistry and Catalysis, Volume 178, presents a comprehensive picture of recent developments in terms of sustainable industrial processes and the catalytic needs and opportunities to develop these novel routes. Each chapter includes an introduction and state-of-the-art in the field, along with a series of specific aspects and examples. The book identifies new opportunities for research that will help us transition to low carbon and sustainable energy and chemical production. Users will find an integrated view of the new possibilities in this area that unleashes new possibilities in energy and chemistry. - Combines an analysis of each scenario, the state-of-the art, and specific examples to help users better understand needs, opportunities, gaps and challenges - Offers an integrated view of new catalytic technologies that are needed for future use - Presents an interdisciplinary approach that combines broad expertise - Brings together experts in the area of sustainable industrial chemistry