Download Free The Boundary Element Method Volume 1 Book in PDF and EPUB Free Download. You can read online The Boundary Element Method Volume 1 and write the review.

The boundary element method (BEM) is a modern numerical techniquewhich has enjoyed increasing popularity over the last two decades,and is now an established alternative to traditional computationalmethods of engineering analysis. The main advantage of the BEM isits unique ability to provide a complete solution in terms ofboundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with acomprehensive and up-to-date account of the boundary element methodand its application to solving engineering problems. Each volume isa self-contained book including a substantial amount of materialnot previously covered by other text books on the subject. Volume 1covers applications to heat transfer, acoustics, electrochemistryand fluid mechanics problems, while volume 2 concentrates on solidsand structures, describing applications to elasticity, plasticity,elastodynamics, fracture mechanics and contact analysis. The earlychapters are designed as a teaching text for final yearundergraduate courses. Both volumes reflect the experience of theauthors over a period of more than twenty years of boundary element research. This volume, Applications in Thermo-Fluids and Acoustics, provides acomprehensive presentation of the BEM from fundamentals to advancedengineering applications and encompasses: Steady and transient heat transfer Potential and viscous fluid flows Frequency and time-domain acoustics Corrosion and other electrochemical problems. A unique feature of this book is an in-depth presentation of BEMformulations in all the above fields, including detaileddiscussions of the basic theory, numerical algorithms and practicalengineering applications of the method. Written by an internationally recognised authority in the field,this is essential reading for postgraduates, researchers andpractitioners in civil, mechanical and chemical engineering andapplied mathematics.
The Boundary Element Method for Engineers and Scientists: Theory and Applications is a detailed introduction to the principles and use of boundary element method (BEM), enabling this versatile and powerful computational tool to be employed for engineering analysis and design. In this book, Dr. Katsikadelis presents the underlying principles and explains how the BEM equations are formed and numerically solved using only the mathematics and mechanics to which readers will have been exposed during undergraduate studies. All concepts are illustrated with worked examples and problems, helping to put theory into practice and to familiarize the reader with BEM programming through the use of code and programs listed in the book and also available in electronic form on the book's companion website. - Offers an accessible guide to BEM principles and numerical implementation, with worked examples and detailed discussion of practical applications - This second edition features three new chapters, including coverage of the dual reciprocity method (DRM) and analog equation method (AEM), with their application to complicated problems, including time dependent and non-linear problems, as well as problems described by fractional differential equations - Companion website includes source code of all computer programs developed in the book for the solution of a broad range of real-life engineering problems
This thorough yet understandable introduction to the boundary element method presents an attractive alternative to the finite element method. It not only explains the theory but also presents the implementation of the theory into computer code, the code in FORTRAN 95 can be freely downloaded. The book also addresses the issue of efficiently using parallel processing hardware in order to considerably speed up the computations for large systems. The applications range from problems of heat and fluid flow to static and dynamic elasto-plastic problems in continuum mechanics.
This introductory course on the classical Boundary Element Method also contains advanced topics such as the Dual Reciprocity and the Hybrid Boundary Element Methods. The latter methods are extensions that permit the application of BME to anisotropic materials, as well as multi-field problems and fluid-structure interaction. The class-tested textbook offers a clear and easy-to-understand introduction to the subject, including worked-out examples that describe all the basic features of the method. The first two chapters not only establish the mathematical basis for BEM but also review the basics of continuum mechanics for field problems, perhaps a unique feature for a text on numerical methods. This helps the reader to understand the physical principles of the field problems, to apply the method judiciously, and toe critically evaluate the results.
Disk includes versions of BETIS and SERBA programs and input and output files corresponding to the examples that appear in the book.
The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic.
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.
This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.