Download Free The Biology Of Nonspecific Dna Protein Interactions Book in PDF and EPUB Free Download. You can read online The Biology Of Nonspecific Dna Protein Interactions and write the review.

This important publication addresses the interactions of proteins with nonspecific binding sites on DNA as they play critical roles in fundamental cellular processes such as transcription, DNA replication, and recombination. The book presents current reviews of the biochemistry of representative nonspecific DNA-protein systems, and of their physiological functions. It includes chapters on the techniques used to characterize the complexes, on their thermodynamic properties, and on the role of nonspecific binding as gene regulatory proteins search for specific target sites on the chromosome. Systems considered include the effects of nonspecific binding in regulation of the lactose operon of Escherichia coli, the T4 bacteriophage gene 32 protein, the E. coli single strand binding (SSB) protein and recA protein, eukaryotic SSB's and histone-DNA complexes. The book presents those proteins displaying multiple modes of DNA binding as participants in more than one cellular process. This monograph combines rigorous descriptions of new findings for these important systems with provocative interpretations of the biological significance of the results. It is of great value to researchers ranging from graduate students to senior scientists in the areas of biochemistry, microbiology and molecular/cell biology.
Depite the rapid expansion of the field of biophysics, there are very few books that comprehensively treat specific topics in this area. Recently, the field of single molecule biophysics has developed very quickly, and a few books specifically treating single molecule methods are beginning to appear. However, the promise of single molecule biophysics is to contribute to the understanding of specific fields of biology using new methods. This book would focus on the specific topic of the biophysics of DNA-protein interactions, and would include the use of new approaches, including both bulk methods as well as single molecule methods. This would make the book attractive to anyone working in the general area of DNA-protein interactions, which is of course a much wider market than just single molecule biophysicists or even biophysicists. The subject of the book will be the biophysics of DNA-protein interactions, and will include new methods and results that describe the physical mechanism by which proteins interact with DNA. For example, there has been much recent work on the mechanism by which proteins search for specific binding sites on DNA. A few chapters will be devoted to experiments and theory that shed light on this important problem. We will also cover proteins that alter DNA properties to facilitate interactions important for transcription or replication. Another section of the book will cover the biophysical mechanism by which motor proteins interact with DNA. Finally, we will cover larger protein-DNA complexes, such as replication forks, recombination complexes, DNA repair interactions, and their chromatin context.
The binding of proteins to DNA and the manipulation of DNA by proteins are crucial aspects of the biological role of DNA in the living cell. This book provides a comprehensive and lucid discussion of the molecular interactions involved.
A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.
This book provides both in-depth background and up-to-date information in this area. The chapters are organized by general themes and principles, written by experts who illustrate topics with current findings. Topics covered include: - the role of ions and hydration in protein-nucleic acid interactions - transcription factors and combinatorial specificity - indirect readout of DNA sequence - single-stranded nucleic acid binding proteins - nucleic acid junctions and proteins, - RNA protein recognition - recognition of DNA damage. It will be a key reference for both advanced students and established scientists wishing to broaden their horizons.
With millions of different bacterial species living in soil, the microbial community is extremely complex, varying at very small scales. Microbe-driven functions are essential for most processes in soil. Thus, a better understanding of this microbial diversity will be invaluable for the management of the various soil functions. Nucleic Acids and Proteins in Soil combines traditional approaches in soil microbiology and biochemistry with the latest techniques in molecular microbial ecology. Included are methods to analyse the presence and importance of nucleic acids and proteins both inside and outside microbial cells, the horizontal gene transfer which drives bacterial diversity, as well as soil proteomes. Further chapters describe techniques such as PCR, fingerprinting, the challenging use of gene arrays for structural and functional analysis, stable isotope probing to identify in situ metabolic functions, and the use of marker and reporter genes in soil microbial ecology.
"A key aspect of DNA is its ability to form a variety of structures, this book explains the origins and importance of such structures"--Provided by publisher.
Life scientists believe that life is driven, directed, and shaped by biomolecules working on their own or in concert. It is only in the last few decades that technological breakthroughs in sensitive fluorescence microscopy and single-molecule manipulation techniques have made it possible to observe and manipulate single biomolecules and measure their individual properties. The methodologies presented in Single Molecule Techniques: Methods and Protocols are being applied more and more to the study of biologically relevant molecules, such as DNA, DNA-binding proteins, and motor proteins, and are becoming commonplace in molecular biophysics, biochemistry, and molecular and cell biology. The aim of Single Molecule Techniques: Methods and Protocols is to provide a broad overview of single-molecule approaches applied to biomolecules on the basis of clear and concise protocols, including a solid introduction to the most widely used single-molecule techniques, such as optical tweezers, single-molecule fluorescence tools, atomic force microscopy, magnetic tweezers, and tethered particle motion. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Single Molecule Techniques: Methods and Protocols serves as an ideal guide to scientists of all backgrounds and provides a broad and thorough overview of the exciting and still-emerging field of single-molecule biology.
Dr. Tom Moss assembles the new standard collection of cutting-edge techniques to identify key protein-DNA interactions and define their components, their manner of interaction, and their manner of function, both in the cell and in the test tube. The techniques span a wide range, from factor identification to atomic detail, and include multiple DNA footprinting analyses, including in vivo strategies, gel shift (EMSA) optimization, SELEX, surface plasmon resonance, site-specific DNA-protein crosslinking, and UV laser crosslinking. Comprehensive and broad ranging, DNA-Protein Interactions: Principles and Protocols, 2nd Edition, offers a stellar array of over 100 up-to-date and readily reproducible techniques that biochemists and molecular, cellular, and developmental biologists can use successfully today to understand DNA-protein interactions.
Restriction enzymes are highly specific nucleases which occur ubiquitously among prokaryotic organisms, where they serve to protect bacterial cells against foreign DNA. Many different types of restriction enzymes are known, among them multi-subunit enzymes which depend on ATP or GTP hydrolysis for target site location. The best known representatives, the orthodox type II restriction endonucleases, are homodimers which recognize palindromic sequences, 4 to 8 base pairs in length, and cleave the DNA within or immediately adjacent to the recognition site. In addition to their important biological role (up to 10 % of the genomes of prokaryotic organisms code for restriction/modification systems!), they are among the most important enzymes used for the analysis and recombination of DNA. In addition, they are model systems for the study of protein-nucleic acids interactions and, because of their ubiquitous occurence, also for the understanding of the mechanisms of evolution.