Download Free The Biology And Pathology Of Innate Immunity Mechanisms Book in PDF and EPUB Free Download. You can read online The Biology And Pathology Of Innate Immunity Mechanisms and write the review.

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.
In recent years increased scientific attention has been given to immediate defense mechanisms based on non-clonal recognition of microbial components. These mechanisms constitute the innate immunity arm of the body s defense. Identification of pathogens by these mechanisms involves primarily receptors recognizing sugar moieties of various microorganisms. Innate immunity based mechanisms are essential for the existence of multicellular organisms. They are evolutionarily conserved and designed to provide immediate protection against microbial pathogens to eradicate infection. Activation of innate immunity is crucial for transition to specific immunity and for its orientation, and to assist the specific immune response in the recognition of pathogens and their destruction. Innate immunity is regularly involved in the arrest of bacterial, mycotic, viral and parasitic infections, giving the specific immune response time to become effective. It becomes critically essential in immunocompromised patients who fail to mount specific immune responses due to congenital or acquired immunodeficiencies as a result of chemotherapy, dialysis, immunosuppressive drugs, or HIV infection. The Innate Immunity arsenal constitutes polymorphonuclear and mononuclear phagocytes, mast cells, the complement system, Natural Killer cells, antimicrobial peptides, and presumably a subset of T lymphocytes with TCRl receptors.
Vascular Responses to Pathogens focuses on the growing research from leaders in the field for both the short and long-term impact of pathogens on the vasculature. It discusses various organisms, including bacteria, parasites, and viruses, and their role in key events leading to vascular disease. Formatted to discuss the topic of the interaction of pathogens with the vascular rather than individual diseases described separately, this reference demonstrates that common mechanisms are at play in many different diseases because they have a similar context, their vasculature. This all-inclusive reference book is a must-have tool for researchers and practicing clinicians in the areas of vascular biology, microvasculature, cardiology, and infectious disease. - Covers a wide spectrum of organisms and provides analysis of pathogens and current therapeutic strategies in the context of their vasculature - Provides detailed perspectives on key components contributing to vascular pathogens from leaders in the field - Interfaces between both vascular biology and microbiology by encompassing information on how pathogens affect both macro and microvasculature - Includes coverage of the clinical aspects of sepsis and current therapeutic strategies and anti-sepsis drugs
The book focuses on various aspects and properties of innate immunity, whose deep understanding is integral for safeguarding the human race from further loss of resources and economies due to innate immune response-mediated diseases. Throughout this book, we examine the individual mechanisms by which the innate immune response acts to protect the host from pathogenic infectious agents and other non-communicable diseases. Written by experts in the field, the volume discusses the significance of macrophages in infectious disease, tumor metabolism, and muscular disorders. Chapters cover such topics as the fate of differentiated macrophages and the molecular pathways that are important for the pathologic role of macrophages.
Cardiovascular immunology is a newly emerging research area, investigating the crosstalk between the cardiovascular and the immune system. This crosstalk is evident through (1) crucial immunological capacities and functions of cardiovascular cell types, including cardiomyocytes, fibroblasts, endothelial cells, pericytes and cardiac resident macrophages, (2) the impact of aberrant immune function on the development of cardiovascular disease such as atherosclerosis, direct and indirect immune-mediated heart disease and vasculitis, and (3) the crucial role of the immune system in cardiac repair and regeneration. The Immunology of Cardiovascular Homeostasis and Pathology covers all these aspects of cardiovascular immunology, starting with homeostatic immunological functions of traditional cardiovascular cell types, and moving then to the role of the immune system in cardiovascular pathology and to recent research into targeting the immune system to boost cardiac healing and regeneration.
Humans coexist with millions of harmless microorganisms, but emerging diseases, resistance to antibiotics, and the threat of bioterrorism are forcing scientists to look for new ways to confront the microbes that do pose a danger. This report identifies innovative approaches to the development of antimicrobial drugs and vaccines based on a greater understanding of how the human immune system interacts with both good and bad microbes. The report concludes that the development of a single superdrug to fight all infectious agents is unrealistic.
Vaccinology: An Essential Guide outlines in a clear, practical format the entire vaccine development process, from conceptualization and basic immunological principles through to clinical testing and licensing of vaccines. With an outstanding introduction to the history and practice of vaccinology, it also guides the reader through the basic science relating to host immune responses to pathogens. Covering the safety, regulatory, ethical, and economic and geographical issues that drive vaccine development and trials, it also presents vaccine delivery strategies, novel vaccine platforms (including experimental vaccines and pathogens), antigen development and selection, vaccine modelling, and the development of vaccines against emerging pathogens and agents of bioterror. There are also sections devoted to veterinary vaccines and associated regulatory processes. Vaccinology: An Essential Guide is a perfect tool for designed for undergraduate and graduate microbiologists and immunologists, as well as residents, fellows and trainees of infectious disease and vaccinology. It is also suitable for all those involved in designing and conducting clinical vaccine trials, and is the ideal companion to the larger reference book Vaccinology: Principles and Practice.
As the molecular basis of human disease becomes better characterized, and the implications for understanding the molecular basis of disease becomes realized through improved diagnostics and treatment, Molecular Pathology, Second Edition stands out as the most comprehensive textbook where molecular mechanisms represent the focus. It is uniquely concerned with the molecular basis of major human diseases and disease processes, presented in the context of traditional pathology, with implications for translational molecular medicine. The Second Edition of Molecular Pathology has been thoroughly updated to reflect seven years of exponential changes in the fields of genetics, molecular, and cell biology which molecular pathology translates in the practice of molecular medicine. The textbook is intended to serve as a multi-use textbook that would be appropriate as a classroom teaching tool for biomedical graduate students, medical students, allied health students, and others (such as advanced undergraduates). Further, this textbook will be valuable for pathology residents and other postdoctoral fellows that desire to advance their understanding of molecular mechanisms of disease beyond what they learned in medical/graduate school. In addition, this textbook is useful as a reference book for practicing basic scientists and physician scientists that perform disease-related basic science and translational research, who require a ready information resource on the molecular basis of various human diseases and disease states. - Explores the principles and practice of molecular pathology: molecular pathogenesis, molecular mechanisms of disease, and how the molecular pathogenesis of disease parallels the evolution of the disease - Explains the practice of "molecular medicine and the translational aspects of molecular pathology - Teaches from the perspective of "integrative systems biology - Enhanced digital version included with purchase
Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.