Download Free The Best Writing On Mathematics 2016 Book in PDF and EPUB Free Download. You can read online The Best Writing On Mathematics 2016 and write the review.

The year's finest mathematics writing from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2016 makes available to a wide audience many articles not easily found anywhere else—and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Burkard Polster shows how to invent your own variants of the Spot It! card game, Steven Strogatz presents young Albert Einstein's proof of the Pythagorean Theorem, Joseph Dauben and Marjorie Senechal find a treasure trove of math in New York's Metropolitan Museum of Art, and Andrew Gelman explains why much scientific research based on statistical testing is spurious. In other essays, Brian Greene discusses the evolving assumptions of the physicists who developed the mathematical underpinnings of string theory, Jorge Almeida examines the misperceptions of people who attempt to predict lottery results, and Ian Stewart offers advice to authors who aspire to write successful math books for general readers. And there's much, much more. In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
The year's finest mathematics writing from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2016 makes available to a wide audience many articles not easily found anywhere else—and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Burkard Polster shows how to invent your own variants of the Spot It! card game, Steven Strogatz presents young Albert Einstein's proof of the Pythagorean Theorem, Joseph Dauben and Marjorie Senechal find a treasure trove of math in New York's Metropolitan Museum of Art, and Andrew Gelman explains why much scientific research based on statistical testing is spurious. In other essays, Brian Greene discusses the evolving assumptions of the physicists who developed the mathematical underpinnings of string theory, Jorge Almeida examines the misperceptions of people who attempt to predict lottery results, and Ian Stewart offers advice to authors who aspire to write successful math books for general readers. And there's much, much more. In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
The year's finest mathematics writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2017 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today’s hottest mathematical debates. Here Evelyn Lamb describes the excitement of searching for incomprehensibly large prime numbers, Jeremy Gray speculates about who would have won math’s highest prize—the Fields Medal—in the nineteenth century, and Philip Davis looks at mathematical results and artifacts from a business and marketing viewpoint. In other essays, Noson Yanofsky explores the inherent limits of knowledge in mathematical thinking, Jo Boaler and Lang Chen reveal why finger-counting enhances children’s receptivity to mathematical ideas, and Carlo Séquin and Raymond Shiau attempt to discover how the Renaissance painter Fra Luca Pacioli managed to convincingly depict his famous rhombicuboctahedron, a twenty-six-sided Archimedean solid. And there’s much, much more. In addition to presenting the year’s most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
The year’s finest mathematical writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2018 makes available to a wide audience many pieces not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These essays delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice—and taking readers behind the scenes of today’s hottest mathematical debates. James Grime shows how to build subtly mischievous dice for playing slightly unfair games and Michael Barany traces how our appreciation of the societal importance of mathematics has developed since World War II. In other essays, Francis Su extolls the inherent values of learning, doing, and sharing mathematics, and Margaret Wertheim takes us on a mathematical exploration of the mind and the world—with glimpses at science, philosophy, music, art, and even crocheting. And there’s much, much more. In addition to presenting the year’s most memorable math writing, this must-have anthology includes an introduction by the editor and a bibliography of other notable pieces on mathematics. This is a must-read for anyone interested in where math has taken us—and where it is headed.
An anthology of the year's finest writing on mathematics from around the world, featuring promising new voices as well as some of the foremost names in mathematics.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
The year's finest mathematical writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2020 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday aspects of math, and take readers behind the scenes of today’s hottest mathematical debates. Here, Steven Strogatz reveals how calculus drives advances in virology, Paul Thagard argues that the power of mathematics stems from its combination of realistic and fictional qualities, and Erica Klarreich describes how Hao Huang used the combinatorics of cube nodes to solve a longstanding problem in computer science. In other essays, John Baez tells how he discovered the irresistible attractions of algebraic geometry, Mark Colyvan compares the radically different explanatory practices of mathematics and science, and Boris Odehnal reviews some surprising properties of multidimensional geometries. And there’s much, much more. In addition to presenting the year’s most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
This book will help those wishing to teach a course in technical writing, or who wish to write themselves.
A hilarious reeducation in mathematics-full of joy, jokes, and stick figures-that sheds light on the countless practical and wonderful ways that math structures and shapes our world. In Math With Bad Drawings, Ben Orlin reveals to us what math actually is; its myriad uses, its strange symbols, and the wild leaps of logic and faith that define the usually impenetrable work of the mathematician. Truth and knowledge come in multiple forms: colorful drawings, encouraging jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone. Orlin shows us how to think like a mathematician by teaching us a brand-new game of tic-tac-toe, how to understand an economic crises by rolling a pair of dice, and the mathematical headache that ensues when attempting to build a spherical Death Star. Every discussion in the book is illustrated with Orlin's trademark "bad drawings," which convey his message and insights with perfect pitch and clarity. With 24 chapters covering topics from the electoral college to human genetics to the reasons not to trust statistics, Math with Bad Drawings is a life-changing book for the math-estranged and math-enamored alike.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.