Download Free The Auditory System And Human Sound Localization Behavior Book in PDF and EPUB Free Download. You can read online The Auditory System And Human Sound Localization Behavior and write the review.

The Auditory System and Human Sound-Localization Behavior provides a comprehensive account of the full action-perception cycle underlying spatial hearing. It highlights the interesting properties of the auditory system, such as its organization in azimuth and elevation coordinates. Readers will appreciate that sound localization is inherently a neuro-computational process (it needs to process on implicit and independent acoustic cues). The localization problem of which sound location gave rise to a particular sensory acoustic input cannot be uniquely solved, and therefore requires some clever strategies to cope with everyday situations. The reader is guided through the full interdisciplinary repertoire of the natural sciences: not only neurobiology, but also physics and mathematics, and current theories on sensorimotor integration (e.g. Bayesian approaches to deal with uncertain information) and neural encoding. Quantitative, model-driven approaches to the full action-perception cycle of sound-localization behavior and eye-head gaze control Comprehensive introduction to acoustics, systems analysis, computational models, and neurophysiology of the auditory system Full account of gaze-control paradigms that probe the acoustic action-perception cycle, including multisensory integration, auditory plasticity, and hearing impaired
Spatial hearing refers to the capacity of listeners to infer information about direction and distance from auditory signals. Its study involves the overlap of acoustics, psychology, psychophysics, physiology, medicine, engineering, architectural design, and musical analysis, and its applications include the design of speaker systems, concert halls and other interiors, and the development of noise-reduction systems. This book updates and expands an interdisciplinary survey and text first published in Germany in 1974. The Journal of the Institute for Radio Engineering wrote of the first edition that "the literature in this field is so fragmented and scattered that it is virtually inaccessible to most audio engineers, telecommunications technicians, and others for whom it is of vital interest. Thus it is all the more a pleasure to acclaim the author of this first comprehensive monograph, and to recognize how successful he has been in his lucid organization and presentation of so much information." The first three chapters offer a general outline of the problem and approaches to its study (apparatus, experimental techniques, psychometric methods); a survey of experiments with a single sound source emitting signals over a range of frequencies and intensities; and a similar survey involving multiple sound sources and enclosed spaces. A new fourth chapter has been added to this edition, reviewing work done since 1972. It includes material on the physics of the external ear, monoaural and interaural attributes of ear input signals, and applications to architectural acoustics and "dummy-head" stereophony. The book also includes an extensive and up to date bibliography.
The Springer Handbook of Auditory Research presents a series of compreh- sive and synthetic reviews of the fundamental topics in modern auditory - search. The volumes are aimed at all individuals with interests in hearing research including advanced graduate students, postdoctoral researchers, and clinical investigators. The volumes are intended to introduce new investigators to important aspects of hearing science and to help established investigators to better understand the fundamental theories and data in ?elds of hearing that they may not normally follow closely. Each volume presents a particular topic comprehensively, and each serves as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in peer-reviewed journals. The volumes focus on topics that have developed a solid data and conceptual foundation rather than on those for which a literature is only beginning to develop. New research areas will be covered on a timely basis in the series as they begin to mature.
The field of spatial hearing has exploded in the decade or so since Jens Blauert's classic work on acoustics was first published in English. This revised edition adds a new chapter that describes developments in such areas as auditory virtual reality (an important field of application that is based mainly on the physics of spatial hearing), binaural technology (modeling speech enhancement by binaural hearing), and spatial sound-field mapping. The chapter also includes recent research on the precedence effect that provides clear experimental evidence that cognition plays a significant role in spatial hearing.The remaining four chapters in this comprehensive reference cover auditory research procedures and psychometric methods, spatial hearing with one sound source, spatial hearing with multiple sound sources and in enclosed spaces, and progress and trends from 1972 (the first German edition) to 1983 (the first English edition) -- work that includes research on the physics of the external ear, and the application of signal processing theory to modeling the spatial hearing process. There is an extensive bibliography of more than 900 items.
The Auditory System and Human Sound-Localization Behavior provides a comprehensive account of the full action-perception cycle underlying spatial hearing. It highlights the interesting properties of the auditory system, such as its organization in azimuth and elevation coordinates. Readers will appreciate that sound localization is inherently a neuro-computational process (it needs to process on implicit and independent acoustic cues). The localization problem of which sound location gave rise to a particular sensory acoustic input cannot be uniquely solved, and therefore requires some clever strategies to cope with everyday situations. The reader is guided through the full interdisciplinary repertoire of the natural sciences: not only neurobiology, but also physics and mathematics, and current theories on sensorimotor integration (e.g. Bayesian approaches to deal with uncertain information) and neural encoding. Quantitative, model-driven approaches to the full action-perception cycle of sound-localization behavior and eye-head gaze control Comprehensive introduction to acoustics, systems analysis, computational models, and neurophysiology of the auditory system Full account of gaze-control paradigms that probe the acoustic action-perception cycle, including multisensory integration, auditory plasticity, and hearing impaired
Millions of Americans experience some degree of hearing loss. The Social Security Administration (SSA) operates programs that provide cash disability benefits to people with permanent impairments like hearing loss, if they can show that their impairments meet stringent SSA criteria and their earnings are below an SSA threshold. The National Research Council convened an expert committee at the request of the SSA to study the issues related to disability determination for people with hearing loss. This volume is the product of that study. Hearing Loss: Determining Eligibility for Social Security Benefits reviews current knowledge about hearing loss and its measurement and treatment, and provides an evaluation of the strengths and weaknesses of the current processes and criteria. It recommends changes to strengthen the disability determination process and ensure its reliability and fairness. The book addresses criteria for selection of pure tone and speech tests, guidelines for test administration, testing of hearing in noise, special issues related to testing children, and the difficulty of predicting work capacity from clinical hearing test results. It should be useful to audiologists, otolaryngologists, disability advocates, and others who are concerned with people who have hearing loss.
The Auditory System at the Cocktail Party is a rather whimsical title that points to the very serious challenge faced by listeners in most everyday environments: how to hear out sounds of interest amid a cacophony of competing sounds. The volume presents the mechanisms for bottom-up object formation and top-down object selection that the auditory system employs to meet that challenge. Ear and Brain Mechanisms for Parsing the Auditory Scene by John C. Middlebrooks and Jonathan Z. Simon Auditory Object Formation and Selection by Barbara Shinn-Cunningham, Virginia Best, and Adrian K. C. Lee Energetic Masking and Masking Release by John F. Culling and Michael A. Stone Informational Masking in Speech Recognition by Gerald Kidd, Jr. and H. Steven Colburn Modeling the Cocktail Party Problem by Mounya Elhilali Spatial Stream Segregation by John C. Middlebrooks Human Auditory Neuroscience and the Cocktail Party Problem by Jonathan Z. Simon Infants and Children at the Cocktail Party by Lynne Werner Older Adults at the Cocktail Party by M. Kathleen Pichora-Fuller, Claude Alain, and Bruce A. Schneider Hearing with Cochlear Implants and Hearing Aids in Complex Auditory Scenes by Ruth Y. Litovsky, Matthew J. Goupell, Sara M. Misurelli, and Alan Kan About the Editors: John C. Middlebrooks is a Professor in the Department of Otolaryngology at the University of California, Irvine, with affiliate appointments in the Department of Neurobiology and Behavior, the Department of Cognitive Sciences, and the Department of Biomedical Engineering. Jonathan Z. Simon is a Professor at the University of Maryland, College Park, with joint appointments in the Department of Electrical and Computer Engineering, the Department of Biology, and the Institute for Systems Research. Arthur N. Popper is Professor Emeritus and Research Professor in the Department of Biology at the University of Maryland, College Park. Richard R. Fay is Distinguished Research Professor of Psychology at Loyola University, Chicago. About the Series: The Springer Handbook of Auditory Research presents a series of synthetic reviews of fundamental topics dealing with auditory systems. Each volume is independent and authoritative; taken as a set, this series is the definitive resource in the field.
There has been substantial progress in understanding the contributions of the auditory forebrain to hearing, sound localization, communication, emotive behavior, and cognition. The Auditory Cortex covers the latest knowledge about the auditory forebrain, including the auditory cortex as well as the medial geniculate body in the thalamus. This book will cover all important aspects of the auditory forebrain organization and function, integrating the auditory thalamus and cortex into a smooth, coherent whole. Volume One covers basic auditory neuroscience. It complements The Auditory Cortex, Volume 2: Integrative Neuroscience, which takes a more applied/clinical perspective.
The full power of combining experiment and theory has yet to be unleashed on studies of the neural mechanisms in the brain involved in acoustic information processing. In recent years, enormous amounts of physiological data have been generated in many laboratories around the world, characterizing electrical responses of neurons to a wide array of acoustic stimuli at all levels of the auditory neuroaxis. Modern approaches of cellular and molecular biology are leading to new understandings of synaptic transmission of acoustic information, while application of modern neuro-anatomical methods is giving us a fairly comprehensive view ofthe bewildering complexity of neural circuitry within and between the major nuclei of the central auditory pathways. Although there is still the need to gather more data at all levels of organization, a ma jor challenge in auditory neuroscience is to develop new frameworks within which existing and future data can be incorporated and unified, and which will guide future laboratory ex perimentation. Here the field can benefit greatly from neural modeling, which in the central auditory system is still in its infancy. Indeed, such an approach is essential if we are to address questions related to perception of complex sounds including human speech, to the many di mensions of spatial hearing, and to the mechanisms that underlie complex acoustico-motor behaviors.