Download Free The Art And Science Of Ultrawideband Antennas Second Edition Book in PDF and EPUB Free Download. You can read online The Art And Science Of Ultrawideband Antennas Second Edition and write the review.

This comprehensive treatment of ultrawideband (UWB) antennas and time-domain microwave engineering serves as an invaluable practical reference for anyone involved in antenna and RF design work. This authoritative volume enables readers to select the proper UWB antennas for their applications, design and analyze UWB antennas, and integrate these antennas in an RF system. By applying time-domain thinking to problems of practical interest, the reader will not only learn how to build and analyze antennas, but also understand them at the most fundamental level. This second edition is updated and expanded throughout, providing readers with a history of antennas, numerous new problem sets and worked examples, along with new information on plotting time-domain field lines, time-domain reflectometry, matching techniques, and more. This book also addresses system issues like spectral control and antenna efficiency.
This updated edition of an Artech House classic contains steering, focusing, and spreading of antenna beams using the physics of refraction of electromagnetic waves through a plasma. Pulsing circuitry for ionizing plasma antennas with low power requirements are covered. New and improved smart plasma antenna and applications to wi-fi and the applications of plasma antennas are discussed. Experimental work on plasma antenna noise and new progress on ruggedization and custom-made plasma tubes are also presented. This unique resource provides readers with a solid understanding of the efficient design and prototype development of plasma antennas to meet the challenge of reducing the power required to ionize the gas at various plasma densities. Thorough coverage of the technical underpinnings of plasma antennas, as well as important discussions on current markets and applications are discussed. Additionally, the book presents experimental work in this cutting-edge area and reveals the latest developments in the field.
This title provides a unique theoretical framework for multi-mode resonant antennas and different approaches to their implementation, with an emphasis on mode gauge functionality, a new concept for a clear identification and flexible control of all usable resonant modes in multi-mode resonant antenna design. The book commences by advancing a generalized odd-even mode theory as a general theoretical framework for resonant elementary antennas, offering new insights into the classical problem of coupling effects between antenna and transmission lines and helping reveal the operation mechanism of elementary antennas under multi-mode resonance. Then, the concept of "mode gauge" is developed and employed for wideband elementary antenna design by simultaneously exciting and tuning multiple resonant modes within a single radiator. Apart from theoretical explorations, the authors also provide analysis of up-to-date implementation of multi-mode resonant elementary antennas with different functionalities, including wideband antennas, circularly polarized antennas, multiband antennas, frequency scanning antennas and low-profile antennas. Academics, students and professional engineers at all levels will greatly benefit from the book and will be provided with historical background, state-of-the-art methodology, useful design tools and multiple applications of multi-mode resonant antennas.
This completely revised and expanded edition of an Artech House classic Polarization in Electromagnetic Systems presents the principles of polarization as applied to electromagnetic systems. This edition emphasizes the concepts needed for functional aspects of systems calculations and device evaluation. Readers find up-to-date coverage of applications in wireless communications. The fundamentals of polarization are explained, including the principles of wave polarization along with their mathematical representations. This book explores polarized, partially polarized waves, and unpolarized waves. The second part of the book addresses applications of polarization to practical systems. Antenna polarization is covered in detail, including omnidirectional, directional, and broadband antennas with emphasis on antennas for generating linear and circular polarization for each antenna type. This book provides detailed coverage of wave interaction with an antenna and dual-polarized systems. Additional topics covered in this edition include propagation through depolarizing media, polarization in wireless communication systems, including polarization diversity and polarization measurements. This hands-on resource provides a clear exposition on the understanding of polarization principles and evaluation of the performance of electromagnetic systems.
This comprehensive treatment of ultrawideband (UWB) antennas and time-domain microwave engineering serves as an invaluable practical reference for anyone involved in antenna and RF design work. This authoritative volume enables readers to select the proper UWB antennas for their applications, design work. This authoritative volume enables readers to select the proper UWB antennas for their applications, design and analyze UWB antennas, and integrate these antennas in an RF system. By applying time-domain thinking to problems of practical interest, the reader will not only learn how to build and analyze antennas, but also understand them at the most fundamental level. This second edition is updated and expanded throughout, providing readers with a history of antennas, numerous new problem sets and examples, along with new information on plotting time-domain field lines, time-domain reflectometry, matching techniques, and more. This book also addresses system issues like spectral control and antenna efficiency. Book jacket.
This ground-breaking resource gives you the background theories and know-how you need to effectively design active phased array antennas with wider bandwidth and scan volume utilizing sparse array technology. The book shows you how to incorporate aperiodic arrays and sparse arrays as a solution for overcoming the restrictions faced in conventional phased antenna designs – such as blind spots, limited scan volume, large power and cooling requirements, RF path losses, and increased complexity – while adhering to the maintenance of SWAP-C resources widely used in aerospace and defence. Packed with step-by-step information and research results unavailable in any other single source to date, the book presents new concepts and techniques that potentially can be applied to many critical defense and commercial requirements such as: radars, satcom on move, sonars, weather monitoring, 5G and 6G for mobile communication, fault and crack detection in buildings and underground pipelines, automotive anti-collisions mechanism in automobiles, mine detection, through wall imaging, and more. The book helps you to understand the fundamental antenna technology being deployed in modern systems and equips you to design problem-solving sparse array models proven by electromagnetic simulations that can reduce the cost and overall complexity of the existing systems. Numerous design studies are documented to validate the theories presented. The book takes into account the functional constraints in designing commercial and military systems while demonstrating provable techniques that are practical and achievable. This is an important resource for phased array antenna designers interested in utilizing sparse array technology with wider bandwidth and scan volume. The book’s straightforward approach and easy-to-follow language also make it accessible to students and those new to the field.
This book provides practical and theoretical aspects for automotive antenna measurements. It comprehensively covers all the information you need to design, develop, place, and use antennas and antenna systems in automotive applications. Special chapters are devoted to some of the most advanced topics in this area, including OTA measurements for Vehicle to Everything (V2X) applications, emulation of virtual drive testing, and specific topics for measurements of automotive RADAR systems. You will understand the various measurement techniques specifically for automotive antennas, including chamber design, absorbers, near-to-far field transformation, and some of the newest techniques such as the use of drones. The book presents both well accepted and standard practices and includes innovative methods that help you quickly adapt to the rapidly evolving field of automotive antenna testing today. This is an excellent reference for antenna engineers, automotive system designers, and anyone who measures and designs antennas for automotive applications.
This book provides a comprehensive overview of the latest trends in Internet of Things (IoT) antenna design. IoT is a rapidly growing network of interconnected devices that can collect and exchange data. This data can be used to improve efficiency, safety, and productivity in many applications, including smart cities, grids, industrial internet, computer security, etc. One of the main components of the IoT is the antenna. Antennas are responsible for transmitting and receiving the data that flows between IoT devices. To be effective, IoT antennas must be small, light, and easy to integrate into devices. They must also be able to operate in various environments, including those with elevated interference levels. This resource covers a wide range of topics, including the challenges and opportunities involved in designing antennas for IoT applications and the importance of miniaturization in IoT antenna design. A comprehensive list of references is included, making it a valuable resource for further study. This is an essential resource for engineers, researchers, and anyone who wants to learn more about the latest trends in IoT antenna design.
This comprehensive resource presents antenna fundamentals balanced with the design of printed antennas. Over 70 antenna projects, along with design dimensions, design flows and antenna performance results are discussed, including antennas for wireless communication, 5G antennas and beamforming. Examples of smartphone antennas, MIMO antennas, aerospace and satellite remote sensing array antennas, automotive antennas and radar systems and many more printed antennas for various applications are also included. These projects include design dimensions and parameters that incorporate the various techniques used by industries and academia. This book is intended to serve as a practical microstrip and printed antenna design guide to cover various real-world applications. All Antenna projects discussed in this book are designed, analyzed and simulated using full-wave electromagnetic solvers. Based on several years of the author’s research in antenna design and development for RF and microwave applications, this book offers an in-depth coverage of practical printed antenna design methodology for modern applications.
Written by a leading expert in the field, this practical new resource presents the fundamentals of electromagnetics and antenna technology. This book covers the design, electromagnetic simulation, fabrication, and measurements for various types of antennas, including impedance matching techniques and beamforming for ultrawideband dipoles, monopoles, loops, vector sensors for direction finding, HF curtain arrays, 3D printed nonplanar patch antenna arrays, waveguides for portable radar, reflector antennas, and other antennas. It explores the essentials of phased array antennas and includes detailed derivations of important field equations, and a detailed formulation of the method of moments. This resource exhibits essential derivations of equations, providing readers with a strong foundation of the underpinnings of electromagnetics and antennas. It includes a complete chapter on the details of antenna and electromagnetic test and measurement. This book explores details on 3D printed non-planar circular patch array antenna technology and the design and analysis of a planar array-fed axisymmetric gregorian reflector. The lumped-element impedance matched antennas are examined and include a look at an analytic impedance matching solution with a parallel LC network. This book provides key insight into many aspects of antenna technology that have broad applications in radar and communications.