Download Free The Areal Reduction Factor In Rainfall Frequency Estimation Book in PDF and EPUB Free Download. You can read online The Areal Reduction Factor In Rainfall Frequency Estimation and write the review.

Information about extreme precipitation is of great interest for a variety of purposes, which include dam design and its operation, public safety, engineering projects concerned with river management and drainage as well as rainfall-runoff relations. These require knowledge about the spatial and temporal variability of average rainfall over an area. Design rainfall values are generally expressed in the form of point rainfall intensity values which is the rainfall depth at a location. In order to obtain areal average values for an area, hydrologists and engineers require techniques whereby point rainfall amounts can be transformed to average rainfall amounts over a specified area. This problem of point-to-area rainfall conversion can be addressed using depth-area curves which require the use of areal reduction factors. The derivation of areal reduction factors is a focal issue and has been dealt with in diverse manners. Though the methods of derivation of the areal reduction factors vary, results shown by them are comparable. But all these methods have certain shortcomings in the procedures adopted by them. In this application the analysis is based on radar rainfall values obtained from NEXRAD for the study area of Texas as provided by West Gulf River Forecasting Centre (WGRFC). Using NEXRAD radar rainfall data, geographically fixed depth area relationships will be determined. Here the objectives are to develop areal reduction factors using radar data and to identify the potential obstacles that might hinder the use of such data. The values of the factors developed will be finally compared to other studies which have been carried out. This approach aims to mitigate the difficulties faced in the applications of various procedures and the shortcomings of the various techniques used to determine the values of areal reduction factors.
Rainfall: Physical Process, Measurement, Data Analysis and Usage in Hydrological Investigations integrates different rainfall perspectives, from droplet formation and modeling developments to the experimental measurements and their analysis, to application in surface and subsurface hydrological investigations. Each chapter provides an updated representation of the involved subject with relative open problems and includes a case study at the end of the chapter. The book targets postgraduate readers studying meteorology, civil and environmental engineering, geophysics, agronomy and natural science, as well as practitioners working in the fields of hydrology, hydrogeology, agronomy and water resource management. Presents comprehensive coverage of rainfall-related topics, from the basic processes involved in the drop formation to data use and modeling Provides real-life examples for practical use in the form of a case study in each chapter
Papers presented at the 10th in a series of conferences on River Basin Management are contained in this book. The included works mark a growing global interest in the planning, design and management of river basin systems and take in to account all aspects of Hydrology, Ecology, Environmental Management, Flood Plains and Wetlands.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 191. Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.