Download Free The Arcata Conference On Representations Of Finite Groups Book in PDF and EPUB Free Download. You can read online The Arcata Conference On Representations Of Finite Groups and write the review.

The papers in these proceedings of the 1986 Arcata Summer Institute bear witness to the extraordinarily vital and intense research in the representation theory of finite groups. The confluence of diverse mathematical disciplines has brought forth work of great scope and depth. Particularly striking is the influence of algebraic geometry and cohomology theory in the modular representation theory and the character theory of reductive groups over finite fields, and in the general modular representation theory of finite groups. The continuing developments in block theory and the general character theory of finite groups is noteworthy. The expository and research aspects of the Summer Institute are well represented by these papers.
The papers in these proceedings of the 1986 Arcata Summer Institute bear witness to the extraordinarily vital and intense research in the representation theory of finite groups. The confluence of diverse mathematical disciplines has brought forth work of great scope and depth. Particularly striking is the influence of algebraic geometry and cohomology theory in the modular representation theory and the character theory of reductive groups over finite fields, and in the general modular representation theory of finite groups. The continuing developments in block theory and the general character theory of finite groups is noteworthy. The expository and research aspects of the Summer Institute are well represented by these papers.
These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.
From April 1, 1984 until March 31, 1991 the Deutsche Forschungsgemeinschaft has sponsored the project "Representation Theory of Finite Groups and Finite Di mensional Algebras". The proposal for this project was submitted by B. Huppert (Mainz), B. Fischer (Bielefeld), G. Michler (Essen), H. Pahlings (Aachen) and C. M. Ringel (Bielefeld) in order to strengthen the interaction between the different re search areas in representation theory. The Deutsche Forschungsgemeinschaft has given many research positions and fellowships for young algebraists enabling them to do research at their own uni versities or as visitors at well known research institutions in America, Australia, England and France. The whole project benefitted very much from an extensive exchange programme between German and American scientists sponsored by the Deutsche Forschungsgemeinschaft and by the National Science Foundation of the United States. This volume presents lectures given in a final conference and reports by members of the project. It is divided into two parts. The first part contains seven survey articles describing recent advances in different areas of representation theory. These articles do not only concentrate on the work done by the German research groups, but also inform on major developments of the subject at all. The volume omits those topics already treated in book form. In particular, it does not contain a survey on K.
This book provides an accessible introduction to the state of the art of representation theory of finite groups. Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures. The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography. The individual chapters cover a range of topics within the subject, from blocks with cyclic defect groups to representations of symmetric groups. Assuming only modest background knowledge at the level of a first graduate course in algebra, this guidebook, intended for students taking first steps in the field, will also provide a reference for more experienced researchers. Although no proofs are included, end-of-chapter exercises make it suitable for student seminars.
A comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic.
An up-to-date and self-contained introduction based on a graduate course taught at the University of Paris.
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.