Download Free The Application Of Viruses To Biotechnology Book in PDF and EPUB Free Download. You can read online The Application Of Viruses To Biotechnology and write the review.

Viruses are microscopic agents that exist worldwide and are present in humans, animals, plants, and other living organisms in which they can cause devastating diseases. However, the advances of biotechnology and next-generation sequencing technologies have accelerated novel virus discovery, identification, sequencing, and manipulation, showing that they present unique characteristics that place them as valuable tools for a wide variety of biotechnological applications. Many applications of viruses have been used for agricultural purposes, namely concerning plant breeding and plant protection. Nevertheless, it is interesting to mention that plants have also many advantages to be used in vaccine production, such as the low cost and low risks they entail, showing once more the versatility of the use of viruses in biotechnology. Although it will obviously never be ignored that viruses are responsible for devastating diseases, it is clear that the more they are studied, the more possibilities they offer to us. They are now on the front line of the most revolutionizing techniques in several fields, providing advances that would not be possible without their existence. In this book there are presented studies that demonstrate the work developed using viruses in biotechnology. These studies were brought by experts that focus on the development and applications of many viruses in several fields, such as agriculture, the pharmaceutical industry, and medicine.
Viruses: Molecular Biology, Host Interactions, and Applications to Biotechnology provides an up-to-date introduction to human, animal and plant viruses within the context of recent advances in high-throughput sequencing that have demonstrated that viruses are vastly greater and more diverse than previously recognized. It covers discoveries such as the Mimivirus and its virophage which have stimulated new discussions on the definition of viruses, their place in the current view, and their inherent and derived 'interactomics' as defined by the molecules and the processes by which virus gene products interact with themselves and their host's cellular gene products. Further, the book includes perspectives on basic aspects of virology, including the structure of viruses, the organization of their genomes, and basic strategies in replication and expression, emphasizing the diversity and versatility of viruses, how they cause disease and how their hosts react to such disease, and exploring developments in the field of host-microbe interactions in recent years. The book is likely to appeal, and be useful, to a wide audience that includes students, academics and researchers studying the molecular biology and applications of viruses - Provides key insights into recent technological advances, including high-throughput sequencing - Presents viruses not only as formidable foes, but also as entities that can be beneficial to their hosts and humankind that are helping to shape the tree of life - Features exposition on the diversity and versatility of viruses, how they cause disease, and an exploration of virus-host interactions
Gene Therapy for Viral Infections provides a comprehensive review of the broader field of nucleic acid and its use in treating viral infections. The text bridges the gap between basic science and important clinical applications of the technology, providing a systematic, integrated review of the advances in nucleic acid-based antiviral drugs and the potential advantages of new technologies over current treatment options. Coverage begins with the fundamentals, exploring varying topics, including harnessing RNAi to silence viral gene expression, antiviral gene editing, viral gene therapy vectors, and non-viral vectors. Subsequent sections include detailed coverage of the developing use of gene therapy for the treatment of specific infections, the principles of rational design of antivirals, and the hurdles that currently face the further advancement of gene therapy technology. - Provides coverage of gene therapy for a variety of infections, including HBV, HCV, HIV, hemorrhagic fever viruses, and respiratory and other viral infections - Bridges the gap between the basic science and the important medical applications of this technology - Features a broad approach to the topic, including an essential overview and the applications of gene therapy, synthetic RNA, and other antiviral strategies that involve nucleic acid engineering - Presents perspectives on the future use of nucleic acids as a novel class of antiviral drugs - Arms the reader with the cutting-edge information needed to stay abreast of this developing field
This book combines an up-to-date summary of how best to genetically engineer viruses with an overview of basic virology. This unique combination makes it an invaluable research tool for virologists and molecular biologists seeking to exploit viruses for a range of applications. Written by highly respected authors, the book also provides comparisons to and guidelines for the use of viruses in difference applications.
Viral Nanotechnology presents an up-to-date overview of the rapidly developing field of viral nanotechnology in the areas of immunology, virology, microbiology, chemistry, physics, and mathematical modeling. Its chapters are by leading researchers and practitioners, making it both a comprehensive and indispensable resource for study and research.Th
This volume emphasizes recent research developments in the field of plant viral pathogenesis and disease resistance, focusing on the underlying molecular biology as well as the application of recent advances to agricultural problems. Each of the following general topics is covered by four or five chapters: genome replication and expression, subviral RNA's, virus/host interactions, and expression of viral genes in transformed plants.
This book contemplates the structure, dynamics and physics of virus particles: From the moment they come into existence by self-assembly from viral components produced in the infected cell, through their extracellular stage, until they recognise and infect a new host cell and cease to exist by losing their physical integrity to start a new infectious cycle. (Bio)physical techniques used to study the structure of virus particles and components, and some applications of structure-based studies of viruses are also contemplated. This book is aimed first at M.Sc. students, Ph.D. students and postdoctoral researchers with a university degree in biology, chemistry, physics or related scientific disciplines who share an interest or are actually working on viruses. We have aimed also at providing an updated account of many important concepts, techniques, studies and applications in structural and physical virology for established scientists working on viruses, irrespective of their physical, chemical or biological background and their field of expertise. We have not attempted to provide a collection of for-experts-only reviews focused mainly on the latest research in specific topics; we have not generally assumed that the reader knows all of the jargon and all but the most recent and advanced results in each topic dealt with in this book. In short, we have attempted to write a book basic enough to be useful to M.Sc and Ph.D. students, as well as advanced and current enough to be useful to senior scientists with an interest in Structural and/or Physical Virology.
This book illustrates a variety of challenges that bug hunters try to solve. It is an outstanding collection of the insights and expertise of an interdisciplinary group of researchers from all walks of life: virologists, physicians, immunologists, electrochemists, physicists, computer scientists, biotechnologists, epidemiologists, and molecular bio
Baculoviruses are perhaps unique among viruses in the breadth of their biotechnological applications: these insect specific viruses are used not only for insect pest management purposes, but also as laboratory research tools for production of recombinant proteins and for protein display, and as potential vectors for human gene therapy. In addition to highlighting recent advances, this volume provides a comprehensive review of the biotechnological applications of these and other insect viruses in both the academic and private sectors.
Harnessing the Power of Viruses explores the application of scientific knowledge about viruses and their lives to solve practical challenges and further advance molecular sciences, medicine and agriculture. The book contains virus-based tools and approaches in the fields of: i) DNA manipulations in vitro and in vivo; ii) Protein expression and characterization; and iii) Virus- Host interactions as a platform for therapy and biocontrol are discussed. It steers away from traditional views of viruses and technology, focusing instead on viral molecules and molecular processes that enable science to better understand life and offer means for addressing complex biological phenomena that positively influence everyday life. The book is written at an intermediate level and is accessible to novices who are willing to acquire a basic level of understanding of key principles in molecular biology, but is also ideal for advanced readers interested in expanding their biological knowledge to include practical applications of molecular tools derived from viruses. - Explores virus-based tools and approaches in DNA manipulation, protein expression and characterization and virus-host interactions - Provides a dedicated focus on viral molecules and molecular processes that enable science to better understand life and address complex biological phenomena - Includes an overview of modern technologies in biology that were developed using viral components/elements and knowledge about viral processes