Download Free The Analytics Edge Book in PDF and EPUB Free Download. You can read online The Analytics Edge and write the review.

"Provides a unified, insightful, modern, and entertaining treatment of analytics. The book covers the science of using data to build models, improve decisions, and ultimately add value to institutions and individuals"--Back cover.
Edge computing and analytics are fascinating the whole world of computing. Industry and business are keenly embracing this sound concept to develop customer-centric solutions by enhancing their operations, offerings, and outputs. There is a bevy of advancements in this domain that came with the arrival of IoT devices. The seamless convergence of microservices and serverless computing creates vast opportunities. With the help of IoT devices and these other developments, there has become a deep interest in business automation and additional improvisations in edge computing. With the steady growth of edge devices and applications of IoT fog/edge computing and analytics, there are also distinct challenges and threats. Research has been keenly focused on identifying and understanding these issues and shortcomings to bring viable solution approaches and algorithms. Cases on Edge Computing and Analytics describes the latest innovations, improvements, and transformations happening with edge devices and computing. It addresses the key concerns of the edge computing paradigm, how they are processed, and the various technologies and tools empowering edge computing and analytics. While highlighting topics within edge computing such as the key drivers for implementation, computing capabilities, security considerations, and use-cases, this book is ideal for IT industry professionals and project managers, computer scientists, computer engineers, and practitioners, stakeholders, researchers, academicians, and students looking for research on the latest trends and transitions in edge computing.
Efficient Single Board Computers (SBCs) and advanced VLSI systems have resulted in edge analytics and faster decision making. The QoS parameters like energy, delay, reliability, security, and throughput should be improved on seeking better intelligent expert systems. The resource constraints in the Edge devices, challenges the researchers to meet the required QoS. Since these devices and components work in a remote unattended environment, an optimum methodology to improve its lifetime has become mandatory. Continuous monitoring of events is mandatory to avoid tragic situations; it can only be enabled by providing high QoS. The applications of IoT in digital twin development, health care, traffic analysis, home surveillance, intelligent agriculture monitoring, defense and all common day to day activities have resulted in pioneering embedded devices, which can offer high computational facility without much latency and delay. The book address industrial problems in designing expert system and IoT applications. It provides novel survey and case study report on recent industrial approach towards Smart City development.
Whether you're a startup founder trying to disrupt an industry or an entrepreneur trying to provoke change from within, your biggest challenge is creating a product people actually want. Lean Analytics steers you in the right direction. This book shows you how to validate your initial idea, find the right customers, decide what to build, how to monetize your business, and how to spread the word. Packed with more than thirty case studies and insights from over a hundred business experts, Lean Analytics provides you with hard-won, real-world information no entrepreneur can afford to go without. Understand Lean Startup, analytics fundamentals, and the data-driven mindset Look at six sample business models and how they map to new ventures of all sizes Find the One Metric That Matters to you Learn how to draw a line in the sand, so you'll know it's time to move forward Apply Lean Analytics principles to large enterprises and established products
The authors of the pioneering Cutting-Edge Marketing Analytics return to the vital conversation of leveraging big data with Marketing Analytics: Essential Tools for Data-Driven Decisions, which updates and expands on the earlier book as we enter the 2020s. As they illustrate, big data analytics is the engine that drives marketing, providing a forward-looking, predictive perspective for marketing decision-making. The book presents actual cases and data, giving readers invaluable real-world instruction. The cases show how to identify relevant data, choose the best analytics technique, and investigate the link between marketing plans and customer behavior. These actual scenarios shed light on the most pressing marketing questions, such as setting the optimal price for one’s product or designing effective digital marketing campaigns. Big data is currently the most powerful resource to the marketing professional, and this book illustrates how to fully harness that power to effectively maximize marketing efforts.
Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students.
Master practical strategic marketing analysis through real-life case studies and hands-on examples. In Cutting Edge Marketing Analytics, three pioneering experts integrate all three core areas of marketing analytics: statistical analysis, experiments, and managerial intuition. They fully detail a best-practice marketing analytics methodology, augmenting it with case studies that illustrate the quantitative and data analysis tools you'll need to allocate resources, define optimal marketing mixes; perform effective analysis of customers and digital marketing campaigns, and create high-value dashboards and metrics. For each marketing problem, the authors help you: Identify the right data and analytics techniques Conduct the analysis and obtain insights from it Outline what-if scenarios and define optimal solutions Connect your insights to strategic decision-making Each chapter contains technical notes, statistical knowledge, case studies, and real data you can use to perform the analysis yourself. As you proceed, you'll gain an in-depth understanding of: The real value of marketing analytics How to integrate quantitative analysis with managerial sensibility How to apply linear regression, logistic regression, cluster analysis, and Anova models The crucial role of careful experimental design For all marketing professionals specializing in marketing analytics and/or business intelligence; and for students and faculty in all graduate-level business courses covering Marketing Analytics, Marketing Effectiveness, or Marketing Metrics
An evidence-based organizational framework for exceptional analytics team results The Analytics Lifecycle Toolkit provides managers with a practical manual for integrating data management and analytic technologies into their organization. Author Gregory Nelson has encountered hundreds of unique perspectives on analytics optimization from across industries; over the years, successful strategies have proven to share certain practices, skillsets, expertise, and structural traits. In this book, he details the concepts, people and processes that contribute to exemplary results, and shares an organizational framework for analytics team functions and roles. By merging analytic culture with data and technology strategies, this framework creates understanding for analytics leaders and a toolbox for practitioners. Focused on team effectiveness and the design thinking surrounding product creation, the framework is illustrated by real-world case studies to show how effective analytics team leadership works on the ground. Tools and templates include best practices for process improvement, workforce enablement, and leadership support, while guidance includes both conceptual discussion of the analytics life cycle and detailed process descriptions. Readers will be equipped to: Master fundamental concepts and practices of the analytics life cycle Understand the knowledge domains and best practices for each stage Delve into the details of analytical team processes and process optimization Utilize a robust toolkit designed to support analytic team effectiveness The analytics life cycle includes a diverse set of considerations involving the people, processes, culture, data, and technology, and managers needing stellar analytics performance must understand their unique role in the process of winnowing the big picture down to meaningful action. The Analytics Lifecycle Toolkit provides expert perspective and much-needed insight to managers, while providing practitioners with a new set of tools for optimizing results.
This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
Drive maximum business value from digital analytics, web analytics, site analytics, and business intelligence! In Building a Digital Analytics Organization, pioneering expert Judah Phillips thoroughly explains digital analytics to business practitioners, and presents best practices for using it to reduce costs and increase profitable revenue throughout the business. Phillips covers everything from making the business case through defining and executing strategy, and shows how to successfully integrate analytical processes, technology, and people in all aspects of operations. This unbiased and product-independent guide is replete with examples, many based on the author’s own extensive experience. Coverage includes: key concepts; focusing initiatives and strategy on business value, not technology; building an effective analytics organization; choosing the right tools (and understanding their limitations); creating processes and managing data; analyzing paid, owned, and earned digital media; performing competitive and qualitative analyses; optimizing and testing sites; implementing integrated multichannel digital analytics; targeting consumers; automating marketing processes; and preparing for the revolutionary “analytical economy.” For all business practitioners interested in analytics and business intelligence in all areas of the organization.