Stephen Brenner
Published: 1984
Total Pages: 84
Get eBook
The flexible resolution/truncation baseline version of the AFGL global spectral model as adapted to the CRAY-1 is described. A series of low-resolution (6 layer, rhomboidal 15) and high-resolution (12 layer, rhomboidal 30) forecasts were run and compared to test the performance of the model. In general, higher resolution resulted in improved forecast skill in the 24-to-96-hour range. The only exception to this is the humidity forecast, which shows minimal skill. This characteristic is rather insensitive to the resolution partly because of the poor quality of analyzed humidity fields used for initial data and verification. The original gridded (2.5 X 2.5 deg) topography has been replaced by a smoothed terrain field that has been passed through a nine-point smoother, interpolated to the model's Gaussian grid, and then spectrally truncated. Finally, the effects of initialization have been studied by comparing a series of forecasts subjected to several initialization methods. For forecasts beyond 24 hours, the model is able to supress spurious gravity waves through the combined effects of the semi-implicit time scheme and the subgrid scale diffusion. The impact of normal mode initialization is seen mainly in the very short-range forecasts (less than 24 hours) and is thus important for providing smooth first-guess fields for the analysis/data assimilation cycle. Keywords: Atmospheric models; Spectral models; Weather forecasting; Numerical weather prediction; Global atmospheric circulation.