Download Free The Advance Of Neuroscience Book in PDF and EPUB Free Download. You can read online The Advance Of Neuroscience and write the review.

Significant advances in brain research have been made, but investigators who face the resulting explosion of data need new methods to integrate the pieces of the "brain puzzle." Based on the expertise of more than 100 neuroscientists and computer specialists, this new volume examines how computer technology can meet that need. Featuring outstanding color photography, the book presents an overview of the complexity of brain research, which covers the spectrum from human behavior to genetic mechanisms. Advances in vision, substance abuse, pain, and schizophrenia are highlighted. The committee explores the potential benefits of computer graphics, database systems, and communications networks in neuroscience and reviews the available technology. Recommendations center on a proposed Brain Mapping Initiative, with an agenda for implementation and a look at issues such as privacy and accessibility.
This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck
Neuroscience, like psychology, has a short history but a long past. Although the mind-body relationship has been studied for a long time, it is only in the last fifty years that the term "neuroscience" has been applied to the academic disciplines focusing on brain and behavior. This book explores topics on the brain, psychoactive drugs, and a variety of human behaviors and experiences--such as music and sleep--taking into consideration the importance of historical roots of neuroscience, which have been largely unexamined before now. It looks particularly at the importance of the Victorian era in the development of theories of the nervous system, which are still visible in today's discourse on brain and behavior.
For modern scientists, history often starts with last week's journals and is regarded as largely a quaint interest compared with the advances of today. However, this book makes the case that, measured by major advances, the greatest decade in the history of brain studies was mid-twentieth century, especially the 1950s. The first to focus on worldwide contributions in this period, the book ranges through dozens of astonishing discoveries at all levels of the brain, from DNA (Watson and Crick), through growth factors (Hamburger and Levi-Montalcini), excitability (Hodgkin and Huxley), synapses (Katz and Eccles), dopamine and Parkinson's (Carlsson), visual processing (Hartline and Kuffler), the cortical column (Mountcastle), reticular activating system (Morruzzi and Magoun) and REM sleep (Aserinsky), to stress (Selye), learning (Hebb) and memory (HM and Milner). The clinical fields are also covered, from Cushing and Penfield, psychosurgery and brain energy metabolism (Kety), to most of the major psychoactive drugs in use today (beginning with Delay and Deniker), and much more.The material has been the basis for a highly successful advanced undergraduate and graduate course at Yale, with the classic papers organized and accessible on the web. There is interest for a wide range of readers, academic, and lay because there is a focus on the creative process itself, on understanding how the combination of unique personalities, innovative hypotheses, and new methods led to the advances. Insight is given into this process through describing the struggles between male and female, student and mentor, academic and private sector, and the roles of chance and persistence. The book thus provides a new multidisciplinary understanding of the revolution that created the modern field of neuroscience and set the bar for judging current and future advances.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Unique in its coverage of such an extensive range of methods, Neuroscience Methods: A Guide for Advanced Students provides easy-to-understand descriptions of the many different techniques that are currently being used to study the brain at the molecular and cellular levels. This valuable reference text will help rescue undergraduate and postgraduate students from continuing bewilderment at the methods sections of current neuroscience publications. Topics covered include in vivo and in vitro preparations, electrophysiological, histochemical, hybridization and genetic techniques, measurement of cellular ion concentrations, methods of drug application, production of antibodies, expression systems, and neural grafting.
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications.