Download Free The Adoption Of Digital Twins In Integrated Vehicle Health Management Book in PDF and EPUB Free Download. You can read online The Adoption Of Digital Twins In Integrated Vehicle Health Management and write the review.

To many, a digital twin offers “functionality,” or the ability to virtually rerun events that have happened on the real system and the ability to simulate future performance. However, this requires models based on the physics of the system to be built into the digital twin, links to data from sensors on the real live system, and sophisticated algorithms incorporating artificial intelligence (AI) and machine learning (ML). All of this can be used for integrated vehicle health management (IVHM) decisions, such as determining future failure, root cause analysis, and optimized energy performance. All of these can be used to make decisions to optimize the operation of an aircraft—these may even extend into safety-based decisions. The Adoption of Digital Twins in Integrated Vehicle Health Management, however, still has a range of unsettled topics that cover technological reliability, data security and ownership, user presentation and interfaces, as well as certification of the digital twin’s system mechanics (i.e., AI, ML) for use in safety-critical applications. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2023024
With the increased use of devices requiring the Internet of Things (IoT) to enable “New Mobility,” the demand for satellite-enabled IoT is growing steadily, owing to the extensive coverage provided by satellites (over existing ground-based infrastructure). Satellite-based IoT provides precise and real-time vehicle location and tracking services, large-scale geographical vehicle and/or infrastructure monitoring, and increased coverage for remote locations where it may not be possible to install ground-based solutions. The Application of Satellite-based Internet of Things for New Mobility discusses satellite-based IoT topics that still need addressing, which can be broadly classifieds into two areas: (1) affordable technology and (2) network connectivity and data management. While recent innovations are driving down the cost of satellite-based IoT, it remains relatively expensive, and widespread adoption is still not as high as terrestrial, ground-based systems. Security concerns over data and privacy also create significant barriers to entry and need to be addressed along with issues such as intermittent connectivity, latency and bandwidth limitations, and data storage and processing restrictions. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024001
The adoption of metallic additive manufacturing (AM) for heat exchangers offers significant thermal management benefits that range from optimized heat energy transfer to supporting integrated designs that can reduce weight, size, and component numbers. The benefits offered by utilizing AM for heat exchangers transcend industries and have relevance within the aerospace and automotive industries, where new mobility requirements result in the need for efficient energy systems, increasingly efficient component design, and higher temperatures. Additive Manufacturing of Thermal Management Components in Mobility Applications examines the critical unsettled issues, such as lack of understanding regarding metal AM material performance in high-temperature applications and the absence of significant standardization that goes beyond the material grades, printing process parameters, and characterization processes for performance reliability. The report also delves into design, regulation, and certification. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024004
Digital Twin Driven Smart Manufacturing examines the background, latest research, and application models for digital twin technology, and shows how it can be central to a smart manufacturing process.The interest in digital twin in manufacturing is driven by a need for excellent product reliability, and an overall trend towards intelligent, and connected manufacturing systems. This book provides an ideal entry point to this subject for readers in industry and academia, as it answers the questions: (a) What is a digital twin? (b) How to construct a digital twin? (c) How to use a digital twin to improve manufacturing efficiency? (d) What are the essential activities in the implementation of a digital twin? (e) What are the most important obstacles to overcome for the successful deployment of a digital twin? (f) What are the relations between digital twin and New Technologies? (g) How to combine digital twin with the New Technologies to achieve high efficiency and smartness in manufacturing?This book focuses on these problems as it aims to help readers make the best use of digital twin technology towards smart manufacturing. - Analyzes the differences, synergies and possibilities for integration between digital twin technology and other technologies, such as big data, service and Internet of Things - Discuss new requirements for a traditional three-dimension digital twin and proposes a methodology for a five-dimension version - Investigates new models for optimized manufacturing, prognostics and health management, and cyber-physical fusion based on the digital twin
The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, Volume 117, the latest volume in the Advances in Computers series, presents detailed coverage of new advancements in computer hardware, software, theory, design and applications. Chapters vividly illustrate how the emerging discipline of digital twin is strategically contributing to various digital transformation initiatives. Specific chapters cover Demystifying the Digital Twin Paradigm, Digital Twin Technology for "Smarter Manufacturing", The Fog Computing/ Edge Computing to leverage Digital Twin, The industry use cases for the Digital Twin idea, Enabling Digital Twin at the Edge, The Industrial Internet of Things (IIOT), and much more.
This book provides a holistic perspective on Digital Twin (DT) technologies, and presents cutting-edge research in the field. It assesses the opportunities that DT can offer for smart cities, and covers the requirements for ensuring secure, safe and sustainable smart cities. Further, the book demonstrates that DT and its benefits with regard to: data visualisation, real-time data analytics, and learning leading to improved confidence in decision making; reasoning, monitoring and warning to support accurate diagnostics and prognostics; acting using edge control and what-if analysis; and connection with back-end business applications hold significant potential for applications in smart cities, by employing a wide range of sensory and data-acquisition systems in various parts of the urban infrastructure. The contributing authors reveal how and why DT technologies that are used for monitoring, visualising, diagnosing and predicting in real-time are vital to cities’ sustainability and efficiency. The concepts outlined in the book represents a city together with all of its infrastructure elements, which communicate with each other in a complex manner. Moreover, securing Internet of Things (IoT) which is one of the key enablers of DT’s is discussed in details and from various perspectives. The book offers an outstanding reference guide for practitioners and researchers in manufacturing, operations research and communications, who are considering digitising some of their assets and related services. It is also a valuable asset for graduate students and academics who are looking to identify research gaps and develop their own proposals for further research.
This book provides an accessible and comprehensive tutorial on the key enabling technologies for 5G and beyond, covering both the fundamentals and the state-of-the-art 5G standards. The book begins with a historical overview of the evolution of cellular technologies and addresses the questions on why 5G and what is 5G. Following this, six tutorial chapters describe the fundamental technology components for 5G and beyond. These include modern advancements in channel coding, multiple access, massive multiple-input and multiple-output (MIMO), network densification, unmanned aerial vehicle enabled cellular networks, and 6G wireless systems. The second part of this book consists of five chapters that introduce the basics of 5G New Radio (NR) standards developed by 3GPP. These include 5G architecture, protocols, and physical layer aspects. The third part of this book provides an overview of the key 5G NR evolution directions. These directions include ultra-reliable low-latency communication (URLLC) enhancements, operation in unlicensed spectrum, positioning, integrated access and backhaul, air-to-ground communication, and non-terrestrial networks with satellite communication.
This book presents an internationally comprehensive perspective into the field of complex systems. It explores the challenges of and approaches to complexity from a broad range of disciplines, including big data, health care, medicine, mathematics, mechanical and systems engineering, air traffic control and finance. The book’s interdisciplinary character allows readers to identify transferable and mutually exclusive lessons learned among these disciplines and beyond. As such, it is well suited to the transfer of applications and methodologies between ostensibly incompatible disciplines. This book provides fresh perspectives on comparable issues of complexity from the top minds on systems thinking.
The third volume in the Integrated Vehicle Health Management (IVHM) series focuses on the technology that actually supports the implementation of IVHM in real-life situations. Edited by Ian K. Jennions, Director of the IVHM Center at Cranfield University, UK, this book was written collaboratively by twenty-seven authors from industry, academia and governmental research agencies. Topics include: -Sensors, instrumentation and signal processing -Fault detection and diagnostics -Prognostics and metrics -Architecture -Data Management -Vehicle level reasoning systems -System's design -Applications and disruptive technologies Integrated Vehicle Heath Management: The Technology follows two bestsellers, also published by SAE International, which cover the fundamentals aspects of this new body of knowledge (Integrated Vehicle Health Management: Perspectives on an Emerging Field), and the business justification needed so that investments in the technology make sense (Integrated Vehicle Health Management: Business Case Theory and Practice).
Modelled on the concept of Industry 4.0, the idea of Construction 4.0 is based on a confluence of trends and technologies that promise to reshape the way built environment assets are designed, constructed, and operated. With the pervasive use of Building Information Modelling (BIM), lean principles, digital technologies, and offsite construction, the industry is at the cusp of this transformation. The critical challenge is the fragmented state of teaching, research, and professional practice in the built environment sector. This handbook aims to overcome this fragmentation by describing Construction 4.0 in the context of its current state, emerging trends and technologies, and the people and process issues that surround the coming transformation. Construction 4.0 is a framework that is a confluence and convergence of the following broad themes discussed in this book: Industrial production (prefabrication, 3D printing and assembly, offsite manufacture) Cyber-physical systems (actuators, sensors, IoT, robots, cobots, drones) Digital and computing technologies (BIM, video and laser scanning, AI and cloud computing, big data and data analytics, reality capture, Blockchain, simulation, augmented reality, data standards and interoperability, and vertical and horizontal integration) The aim of this handbook is to describe the Construction 4.0 framework and consequently highlight the resultant processes and practices that allow us to plan, design, deliver, and operate built environment assets more effectively and efficiently by focusing on the physical-to-digital transformation and then digital-to-physical transformation. This book is essential reading for all built environment and AEC stakeholders who need to get to grips with the technological transformations currently shaping their industry, research, and teaching.