Download Free The Actinomycetes V2 Book in PDF and EPUB Free Download. You can read online The Actinomycetes V2 and write the review.

Biology of Plant Litter Decomposition, Volume II is organized into two parts. The first part focuses on the organisms involved in plant litter decomposition, particularly, their structure and function. The second part deals with the environmental conditions under which breakdown occurs over the whole global surface. This volume separately considers terrestrial, freshwater, and marine environments. Furthermore, it describes two anthropocentric aspects: agriculture, with an emphasis on the importance of the saprophytic activity of plant pathogenic fungi, and the increasingly important composting of urban waste. This book will be invaluable to science students and instructors, as well as to biologists, botanists, marine ecologists.
Actinobacteria are highly diverse prokaryotes that are ubiquitous in soil, freshwater and marine ecosystems. Although various studies have focused on the ecology of this phylum, data are still scant on the diversity, abundance and ecology of actinobacteria endemic to special and extreme environments, such as gut, plant, alkaline saline soil, deep sea sediments, hot springs and other habitats. Actinobacteria are well-known producers of a vast array of secondary metabolites, many of which have useful applications in medicine and agriculture. Furthermore, actinobacteria also have diverse functions in different environments apart from antibiotic production. For example, actinobacteria are reported to contribute to the break-down and recycling of organic compounds. They play a significant role in fixation of nitrogen, improvement plant growth, biodegradation, bioremediation and environmental protection. Therefore, understanding the actinobacterial diversity and distribution in such special environments is important in deciphering the ecological roles of these microorganisms and for biotechnological bioprospecting. Recent advances in cultivation, DNA sequencing technologies and -omics (metagenomics, metaproteomics etc) methods have greatly contributed to the rapid advancement of our understanding of microbial diversity, function and they interactions with environment. Furthermore, comparative genomic studies can provide overall information about actinobacterial speciation, evolution, metabolism and environment adaptation mechanisms. This research topic comprising reviews and original articles highlights the recent advances regarding the unexpectedly diverse/rare group of actinobacteria with special selective isolation methods or culture-independent methods, as well as their biological activities, ecophysiologica function and mechanisms from diverse special and extreme environments.
This book presents an introductory overview of Actinobacteria with three main divisions: taxonomic principles, bioprospecting, and agriculture and industrial utility, which covers isolation, cultivation methods, and identification of Actinobacteria and production and biotechnological potential of antibacterial compounds and enzymes from Actinobacteria. Moreover, this book also provides a comprehensive account on plant growth-promoting (PGP) and pollutant degrading ability of Actinobacteria and the exploitation of Actinobacteria as ecofriendly nanofactories for biosynthesis of nanoparticles, such as gold and silver. This book will be beneficial for the graduate students, teachers, researchers, biotechnologists, and other professionals, who are interested to fortify and expand their knowledge about Actinobacteria in the field of Microbiology, Biotechnology, Biomedical Science, Plant Science, Agriculture, Plant pathology, Environmental Science, etc.
This is an insiders account of 50 years of genetic studies of the soil-inhabiting microbes that produce most of the antibiotics used to treat infections, as well as anti-cancer, anti-parasitic and immunosuppressant drugs. The book begins by describing how these microbes the actinomycetes were discovered in the latter part of the nineteenth century, but remained a Cinderella group until, in the 1940s, they shot to prominence with the discovery of streptomycin, the first effective treatment for tuberculosis and only the second antibiotic, after penicillin, to become a medical marvel. There followed a massive effort over several decades to find further treatments for infectious diseases and cancer, tempered by the rise of antibiotic resistance consequent on antibiotic misuse and over-use. The book goes on to describe the discovery of gene exchange in the actinomycetes in the context of the rise of microbial genetics in the mid-20th century, leading to determination of the complete DNA sequence of a model member of the group at the turn of the millennium. There follow chapters in which the intricate molecular machinery that adapts the organisms metabolism and development to life in the soil, including antibiotic production, is illuminated by the DNA blueprint. Then come an up-to-the minute account of the use of genetic engineering to make novel, hybrid, antibiotics, and a topical description of techniques to learn the roles of the thousands of genes in a genome sequence, throwing a powerful light on the biology of the organisms and their harnessing for increasing antibiotic productivity. In the final chapter we return to the mycobacteria that cause tuberculosis and leprosy, the first actinomycetes to be discovered, and how methodology, in part derived from the study of the streptomycetes, is being applied to understand and control these still deadly pathogens.
This volume covers all aspects of the antibiotic discovery and development process through Phase II/III. The contributors, a group of highly experienced individuals in both academics and industry, include chapters on the need for new antibiotic compounds, strategies for screening for new antibiotics, sources of novel synthetic and natural antibiotics, discovery phases of lead development and optimization, and candidate compound nominations into development. Beyond discovery , the handbook will cover all of the studies to prepare for IND submission: Phase I (safety and dose ranging), progression to Phase II (efficacy), and Phase III (capturing desired initial indications). This book walks the reader through all aspects of the process, which has never been done before in a single reference. With the rise of antibiotic resistance and the increasing view that a crisis may be looming in infectious diseases, there are strong signs of renewed emphasis in antibiotic research. The purpose of the handbook is to offer a detailed overview of all aspects of the problem posed by antibiotic discovery and development.
Insect Pathology: An Advanced Treatise, Volume 2 reviews the significant progress that has been made in insect pathology, as well as the major research trends in the field. This book is concerned with bacterial, fungus, protozoan, and parasitic diseases, along with the epizootiology of infectious diseases, diagnosis, methodology, and microbial control. Organized into 17 chapters, this volume begins with a brief consideration of the taxonomy of entomogenous bacteria, including common problems of bacterial taxonomy as a whole. The book then discusses diseases caused by certain spore-forming bacteria, such as clostridial pathogens and pathogens of the genus Bacillus. The text also explains milky diseases and their development within the insect host; nonsporulating bacterial pathogens that cause diseases in insects; and infections caused by Coelomomyces and Entomophthorales. The book also introduces the reader to insect diseases caused by hyphomycetous Fungi Imperfecti (Deuteromycetes) not usually associated in nature with a perfect stage, diseases associated with Cordyceps, and infections attributed to parasites belonging to the group Sporozoa. This book is essential reading for entomologists.