Download Free The A To Z Of Mathematics Book in PDF and EPUB Free Download. You can read online The A To Z Of Mathematics and write the review.

Forget the jargon. Forget the anxiety. Just remember themath. In this age of cheap calculators and powerful spreadsheets, whoneeds to know math? The answer is: everyone. Math is all around us.We confront it shopping in the supermarket, paying our bills,checking the sports stats, and working at our jobs. It is also oneof the most fascinating-and useful-subjects. Mastering math canmake a difference in your career, your studies, and your dailylife. If you are among the millions of people who would love tounderstand math but are turned away by fear of its complexity, hereis your salvation. The A to Z of Mathematics makes math simplewithout making it simplistic. Both easy to use and easy to read,the book covers all the topics in basic mathematics. You'll learnthe definitions of such terms as "proportion"and "hexomino," andgrasp the concepts behind algebra, statistics, and other processes.The book's alphabetical arrangement helps you quickly home in onany topic, and its text is rich with stimulating examples,diagrams, and other illustrations that make the discussion crystalclear to every reader. Everyone will find something of interest inthis wide-ranging guide to mathematics. The perfect antidote to math anxiety, this is an invaluableresource for parents and students, home schoolers, teachers, andanyone else who wants to improve his or her math skills anddiscover the amazing relevance of mathematics to the world aroundus.
Mathematics at all levels is about the joy in the discovery; it's about finding things out. This fascinating book is a guide to that discovery process, presenting ideas for practical classroom-based experiments and extension activities. Each experiment is based on the work of a key mathematician who has shaped the way that the subject looks today, and there are historical notes to help teachers bring this work to life. The book includes instructions on how to recreate the experiments using practical mathematics, computer programs and graphical calculators; ideas for follow-up work; background information for teachers on the mathematics involved; and links to the new secondary numeracy strategy framework. Accompanying the book is a CD-ROM with downloadable computer programs that can be used and reworked as part of the experimental process. With a wide range of topics covered, and plenty of scope for interesting follow-up activities, the book will be a valuable tool for mathematics teachers looking to extend the curriculum.
The Complete Book of Math provides 352 pages of fun exercises for students in grades 1 to 2 that teach students key lessons in basic math skills. Lessons cover topics including patterns, comparing, geometry, place value, measurement, graphing, time and money, and fractions. it also includes a complete answer key, user-friendly activities, and easy-to-follow instructions. Over 4 million in print! Designed by leading experts, books in the Complete Book series help children in grades preschool-6 build a solid foundation in key subject areas for learning success. Complete Book are the most thorough and comprehensive learning guides available, offering high-interest lessons to encourage learning and full-color illustrations to spark interest. Each book also features challenging concepts and activities to motivate independent study, a fun page of stickers, and a complete answer key to measure performance and guide instruction.
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
TO THE FIRST RUSSIAN EDITION It was a very difficult task to write a guide-book of a small size designed to contain the fundamental knowledge of mathema tics which is most necessary to engineers and students of higher technical schools. In our tendency to the compactness and brevity of the exposition, we attempted, however, to produce a guide-book which would be easy to understand, convenient to use and as accurate as possible (as much as it is required in engineering). It should be pointed out that this book is neither a handbook nor a compendium, but a guide-book. Therefore it is not written as systematically as a handbook should be written. Hence the reader should not be surprised to find, for example, I'HOpital's rule in the section devoted to computation of limits which is a part of the chapter "Introduction to the analysis" placed before the concept of the derivative, or information about the Gamma function in the chapter "Algebra"-just after the concept of the factorial. There are many such "imperfections" in the book. Thus a reader who wants to acquire certain information is advised to use not only the table of contents but also the alpha betical index inserted at the end of the book. If a problem mentioned in the text is explained in detail in another place of the book, then the corresponding page is indicated in a footnote.
Authoritative and reliable, this A-Z provides jargon-free definitions for even the most technical mathematical terms. With over 3,000 entries ranging from Achilles paradox to zero matrix, it covers all commonly encountered terms and concepts from pure and applied mathematics and statistics, for example, linear algebra, optimisation, nonlinear equations, and differential equations. In addition, there are entries on major mathematicians and on topics of more general interest, such as fractals, game theory, and chaos. Using graphs, diagrams, and charts to render definitions as comprehensible as possible, entries are clear and accessible. Almost 200 new entries have been added to this edition, including terms such as arrow paradox, nested set, and symbolic logic. Useful appendices follow the A-Z dictionary and include lists of Nobel Prize winners and Fields' medallists, Greek letters, formulae, and tables of inequalities, moments of inertia, Roman numerals, a geometry summary, additional trigonometric values of special angles, and many more. This edition contains recommended web links, which are accessible and kept up to date via the Dictionary of Mathematics companion website. Fully revised and updated in line with curriculum and degree requirements, this dictionary is indispensable for students and teachers of mathematics, and for anyone encountering mathematics in the workplace.
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.