Download Free Text Book Of Multiple Integrals Book in PDF and EPUB Free Download. You can read online Text Book Of Multiple Integrals and write the review.

This book Text Book of Multiple Integrals has been specially written to meet the requirement of B.Sc.,/B.A., students of various Indian Universities. The subject matter of this book has been discussed in such a simple way that the students find no difficulty to understand. Each chapter of this book contains complete theory and large number of solved example. Contents: Multiple Integrals (Double and Triple Integrals and Change of Order of Integration), Beta and Gamma Functions (Euler Integral, Dirichlet s Integrals, Liouville Extension of Dirichliet s Theorem), Convergence of Improper Integrals.
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Confusing Textbooks? Missed Lectures? Not Enough Time? Fortunately for you, theres Schaums Outlines. More than 40 million students have trusted Schaums to help them succeed in the classroom and on exams. Schaums is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaums Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaums highlights all the important facts you need to know. Use Schaums to shorten your study time-and get your best test scores! Schaums Outlines-Problem Solved.
This is the first book devoted to lattice methods, a recently developed way of calculating multiple integrals in many variables. Multiple integrals of this kind arise in fields such as quantum physics and chemistry, statistical mechanics, Bayesian statistics and many others. Lattice methods are an effective tool when the number of integrals are large. The book begins with a review of existing methods before presenting lattice theory in a thorough, self-contained manner, with numerous illustrations and examples. Group and number theory are included, but the treatment is such that no prior knowledge is needed. Not only the theory but the practical implementation of lattice methods is covered. An algorithm is presented alongside tables not available elsewhere, which together allow the practical evaluation of multiple integrals in many variables. Most importantly, the algorithm produces an error estimate in a very efficient manner. The book also provides a fast track for readers wanting to move rapidly to using lattice methods in practical calculations. It concludes with extensive numerical tests which compare lattice methods with other methods, such as the Monte Carlo.
A classic treatment of multiple integrals in the calculus of variations and nonlinear elliptic systems from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.
An introduction to the mathematical theory of the homogenization of multiple integrals, this book describes the overall properties of such functionals with various applications ranging from cellular elastic materials to Riemannian metrics.
This work provides a systematic examination of derivatives and integrals of multivariable functions. The approach taken here is similar to that of the author’s previous text, "Continuous Functions of Vector Variables": specifically, elementary results from single-variable calculus are extended to functions in several-variable Euclidean space. Topics encompass differentiability, partial derivatives, directional derivatives and the gradient; curves, surfaces, and vector fields; the inverse and implicit function theorems; integrability and properties of integrals; and the theorems of Fubini, Stokes, and Gauss. Prerequisites include background in linear algebra, one-variable calculus, and some acquaintance with continuous functions and the topology of the real line. Written in a definition-theorem-proof format, the book is replete with historical comments, questions, and discussions about strategy, difficulties, and alternate paths. "Derivatives and Integrals of Multivariable Functions" is a rigorous introduction to multivariable calculus that will help students build a foundation for further explorations in analysis and differential geometry.