Download Free Tetravalent Cerium Complexes Supported By An Oxygen Tripodal Ligand Book in PDF and EPUB Free Download. You can read online Tetravalent Cerium Complexes Supported By An Oxygen Tripodal Ligand and write the review.

Winner of 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE This encyclopedia offers a comprehensive and easy reference to physical organic chemistry (POC) methodology and techniques. It puts POC, a classical and fundamental discipline of chemistry, into the context of modern and dynamic fields like biochemical processes, materials science, and molecular electronics. Covers basic terms and theories into organic reactions and mechanisms, molecular designs and syntheses, tools and experimental techniques, and applications and future directions Includes coverage of green chemistry and polymerization reactions Reviews different strategies for molecular design and synthesis of functional molecules Discusses computational methods, software packages, and more than 34 kinds of spectroscopies and techniques for studying structures and mechanisms Explores applications in areas from biology to materials science The Encyclopedia of Physical Organic Chemistry has won the 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE. The PROSE Awards recognize the best books, journals and digital content produced by professional and scholarly publishers. Submissions are reviewed by a panel of 18 judges that includes editors, academics, publishers and research librarians who evaluate each work for its contribution to professional and scholarly publishing. You can find out more at: proseawards.com Also available as an online edition for your library, for more details visit Wiley Online Library
Phosphoric Acids: Advances in Research and Application: 2011 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about Phosphoric Acids in a concise format. The editors have built Phosphoric Acids: Advances in Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Phosphoric Acids in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Phosphoric Acids: Advances in Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Lanthanides are of great importance for the electronic industries, this new book (from the EIBC Book Series) provides a comprehensive coverage of the basic chemistry, particularly inorganic chemistry, of the lanthanoid elements, those having a 4f shell of electrons. A chapter is describing the similarity of the Group 3 elements, Sc, Y, La, the group from which the lanthanoids originate and the group 13 elements, particularly aluminum, having similar properties. Inclusion of the group 3 and 13 elements demonstrates how the lanthanoid elements relate to other, more common, elements in the Periodic Table. Beginning chapters describe the occurrence and mineralogy of the elements, with a focus on structural features observed in compounds described in later chapters. The majority of the chapters is organized by the oxidation state of the elements, Ln(0), Ln(II), Ln(III), and Ln(IV). Within this organization the chapters are further distinguished by type of compound, inorganic (oxides and hydroxides, aqueous speciation, halides, alkoxides, amides and thiolates, and chelates) and organometallic. Concluding chapters deal with diverse and critically important applications of the lanthanoids in electronic and magnetic materials, and medical imaging.
This series offers leading contributions by well-known chemists reviewing the state of the art of this wide research area. Physical organometallic chemistry aims to develop new insights and to promote novel interest and investigations applicable to organometallic chemistry. This volume focuses on several important topics on fluxionality in organometallic and coordination chemistry, reviewed by experts in each of the respective fields. It is intended to provide both authoritative concepts and stimulating ideas in order to tackle dynamics from different angles, aiming at an interdisciplinary approach. The fascinating fluxionality of metal-ligand interactions has been in the centre of interest ever since modern coordination and organometallic chemistry started, and has expanded towards bioinorganic chemistry, catalysis and materials sciences. Provides information on some of the most relevant physical methods for studying dynamic processes Presents numerous examples of dynamic behavior, demonstrating the efficiency of the respective method and stimulating further applications Connects main group, transition metal and solid state chemistry in the question for dynamics
The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales. Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics covered include: Key concepts in ligand design Redox non-innocent ligands Ligands for selective alkene metathesis Ligands in cross-coupling Ligand design in polymerization Ligand design in modern lanthanide chemistry Cooperative metal-ligand reactivity P,N Ligands for enantioselective hydrogenation Spiro-cyclic ligands in asymmetric catalysis This book will be a valuable reference for academic researchers and industry practitioners working in the field of ligand design, as well as those who work in the many areas in which the impact of ancillary ligand design has proven significant, for example synthetic organic chemistry, catalysis, medicinal chemistry, polymer science and materials chemistry.
Alkoxo and Aryloxo Derivatives of Metals gives a comprehensive account of the chemistry of metal alkoxides and metal aryloxides, including their industrial applications such as microelectronics, ceramics, nonlinear optical materials, high-temperature superconductors, specialized glasses, and other advanced novel materials. It is an invaluable reference source book. The book is an updated edition of Metal Alkoxides, published by Academic Press in 1978, with additional coverage of metal aryloxides. It reflects the enormous growth in interest in this field in recent years. Alkoxo and aryloxo derivatives are organic compounds with metals for useful industrial purposes. Alkoxo and Aryloxo Derivatives of Metals will appeal to a wide-ranging audience, including university researchers and chemistry graduate students in industrial laboratories concerned with microelectronics, ceramics, glasses and other advanced novel materials; any laboratories doing research on nonlinear optical materials, high-temperature superconductors, ceramic materials, and specialized glasses. It can also serve as a supplementary text for final year courses in advanced inorganic chemistry, e.g., metallo-organic chemistry.
This Special Issue is one of the first for the new MDPI flagship journal Chemistry (ISSN 2624-8549) which has a broad remit for publishing original research in all areas of chemistry. The theme of this issue is Supramolecular Chemistry in the 3rd Millennium and I am sure that this topic will attract many exciting contributions. We chose this topic because it encompasses the unity of contemporary pluridisciplinary science, in which organic, inorganic, physical and theoretical chemists work together with molecular biologists and physicists to develop a systems-level understanding of molecular interactions. The description of supramolecular chemistry as 'chemistry beyond the molecule' (Jean-Marie Lehn, Nobel Lecture and Gautam R. Desiraju, Nature, 2001, 412, 397) addresses the wide variety of weak, non-covalent interactions that are the basis for the assembly of supramolecular architectures, molecular receptors and molecular recognition, programed molecular systems, dynamic combinatorial libraries, coordination networks and functional supramolecular materials. We welcome submissions from all disciplines involved in this exciting and evolving area of science.
This book describes the bond valence model, a description of acid-base bonding which is becoming increasingly popular particularly in fields such as materials science and mineralogy where solid state inorganic chemistry is important. Recent improvements in crystal structure determination have allowed the model to become more quantitative. Unlike other models of inorganic chemical bonding, the bond valence model is simple, intuitive, and predictive, and can be used for analysing crystal structures and the conceptual modelling of local as well as extended structures. This is the first book to explore in depth the theoretical basis of the model and to show how it can be applied to synthetic and solution chemistry. It emphasizes the separate roles of the constraints of chemistry and of three-dimensional space by analysing the chemistry of solids. Many applications of the model in physics, materials science, chemistry, mineralogy, soil science, surface science, and molecular biology are reviewed. The final chapter describes how the bond valence model relates to and represents a simplification of other models of inorganic chemical bonding.
A comprehensive book that explores nitrogen fixation by using transition metal-dinitrogen complexes Nitrogen fixation is one of the most prominent fields of research in chemistry. This book puts the focus on the development of catalytic ammonia formation from nitrogen gas under ambient reaction conditions that has been recently repowered by some research groups. With contributions from noted experts in the field, Transition Metal-Dinitrogen Complexes offers an important guide and comprehensive resource to the most recent research and developments on the topic of nitrogen fixation by using transition metal-dinitrogen. The book is filled with the information needed to understand the synthesis of transition metal-dinitrogen complexes and their reactivity. This important book: -Offers a resource for understanding nitrogen fixation chemistry that is essential for explosives, pharmaceuticals, dyes, and all forms of life -Includes the information needed for anyone interested in the field of nitrogen fixation by using transition metal-dinitrogen complexes -Contains state-of-the-art research on synthesis of transition metal-dinitrogen complexes and their reactivity in nitrogen fixation -Incorporates contributions from well-known specialists and experts with an editor who is an innovator in the field of dinitrogen chemistry Written for chemists and scientists with an interest in nitrogen fixation, Transition Metal-Dinitrogen Complexes is a must-have resource to the burgeoning field of nitrogen fixation by using transition metal-dinitrogen complexes.
Ruthenium Oxidation Complexes explores ruthenium complexes, particularly those in higher oxidation states, which function as useful and selective organic oxidation catalysts. Particular emphasis is placed on those systems which are of industrial significance. The preparation, properties and applications of the ruthenium complexes are described, followed by a presentation of their oxidative properties and summary of the different mechanisms involved in the organic oxidations (e.g. oxidations of alcohols, alkenes, arenes and alkynes, alkanes, amines, ethers, phopshines and miscellaneous substrates). Moreover, future trends and developments in the area are discussed. This monograph is aimed at inorganic, organic, industrial and catalysis chemists, especially those who wish to carry out specific organic oxidations using catalytic methods.