Download Free Tethered Space Robot Book in PDF and EPUB Free Download. You can read online Tethered Space Robot and write the review.

Tethered Space Robot: Dynamics, Measurement, and Control discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission design of TSR and then introduces the latest research on pose measurement, dynamics and control. The book covers the TSR system, from principle to applications, including a complete implementing scheme. A useful reference for researchers, engineers and students interested in space robots, OOS and debris removal. - Provides for the first time comprehensive coverage of various aspects of tethered space robots (TSR) - Presents both fundamental principles and application technologies including pose measurement, dynamics and control - Describes some new control techniques, including a coordinated control method for tracking optimal trajectory, coordinated coupling control and coordinated approaching control using mobile tether attachment points
Attitude Takeover Control of Failed Spacecraft is both necessary and urgently required. This book provides an overview of the topic and the role of space robots in handling various types of failed spacecraft. The book divides the means of attitude takeover control into three types, including space manipulator capture, tethered space robot capture, and cellular space robot capture. Spacecraft attitude control is the process of controlling the orientation of a spacecraft (vehicle or satellite) with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.It has become increasingly important: with the increasing number of human space launch activities, the number of failed spacecraft has increased dramatically in recent years. - Proposes a means of attitude takeover control of failed spacecraft - Provides a comprehensive overview of current attitude takeover control technologies of space robots - Covers space manipulator capture, tethered space robot capture, and cellular space robot capture
The book reveals many different aspects of motion control and a wide multiplicity of approaches to the problem as well. Despite the number of examples, however, this volume is not meant to be exhaustive: it intends to offer some original insights for all researchers who will hopefully make their experience available for a forthcoming publication on the subject.
The three volume set LNAI 10462, LNAI 10463, and LNAI 10464 constitutes the refereed proceedings of the 10th International Conference on Intelligent Robotics and Applications, ICIRA 2017, held in Wuhan, China, in August 2017. The 235 papers presented in the three volumes were carefully reviewed and selected from 310 submissions. The papers in this third volume of the set are organized in topical sections on sensors and actuators; mobile robotics and path planning; virtual reality and artificial intelligence; aerial and space robotics; mechatronics and intelligent manufacturing.
This book offers a comprehensive overview of recently developed space multi-tethers, such as maneuverable space tethered nets and space tethered formation. For each application, it provides detailed derivatives to describe and analyze the mathematical model of the system, and then discusses the design and proof of different control schemes for various problems. The dynamics modeling presented is based on Newton and Lagrangian mechanics, and the book also introduces Hamilton mechanics and Poincaré surface of section for dynamics analysis, and employs both centralized and distributed controllers to derive the formation question of the multi-tethered system. In addition to the equations and text, it includes 3D design drawings, schematic diagrams, control scheme blocks and tables to make it easy to understand. This book is intended for researchers and graduate students in the fields of astronautics, control science, and engineering.
Attitude Dynamics and Control of Space Debris During Ion Beam Transportation provides an overview of the cutting-edge research around the topic of contactless ion beam transportation for the removal of space debris. This practical guide covers topics such as space debris attitude motion, the motion of rigid materials in an inhomogeneous high-speed rarefied medium, gravity gradient torque, and more. The book examines and compares the various ways to control the spatial motion of space debris, such as engine thrust or altering the direction of the ion beam axis, and offers simple mathematical models for analyzing system behaviors. - Provides insight on the features, advantages, and disadvantages of contactless ion beam transportation of space debris - Demonstrates how classical mechanics, nonlinear and chaotic dynamics, and methods of stability theory are applied during the ion beam method - Includes simple mathematical models describing the behavior of the considered mechanical system, allowing the reader to understand the nature of the studied phenomenon
This book covers the topics of theoretical principles, dynamics model and algorithm, mission analysis, system design and experimental studies of space nets system, aiming to provide an initial framework in this field and serve as a ready reference for those interested. Space nets system represents a forefront field in future development of aerospace technologies. However, it involves new challenges and problems such as nonlinear and distorted nets structure, complex rigid flexible coupling dynamics, orbital transfer of space flexible composite and dynamics control. Currently, no comprehensive books on space nets dynamics and design are available, so potential readers can get to know the working mechanism, dynamics elements, and mission design of the space nets system from a Chinese perspective.
Next Generation of CubeSats and SmallSats: Enabling Technologies, Missions, and Markets provides a comprehensive understanding of the small and medium sized satellite approach and its potentialities and limitations. The book analyzes promising applications (e.g., constellations and distributed systems, small science platforms that overachieve relative to their development time and cost) as paradigm-shifting solutions for space exploitation, with an analysis of market statistics and trends and a prediction of where the technologies, and consequently, the field is heading in the next decade. The book also provides a thorough analysis of CubeSat potentialities and applications, and addresses unique technical approaches and systems strategies. Throughout key sections (introduction and background, technology details, systems, applications, and future prospects), the book provides basic design tools scaled to the small satellite problem, assesses the technological state-of-the-art, and describes the most recent advancements with a look to the near future. This new book is for aerospace engineering professionals, advanced students, and designers seeking a broad view of the CubeSat world with a brief historical background, strategies, applications, mission scenarios, new challenges and upcoming advances. - Presents a comprehensive and systematic view of the technologies and space missions related to nanosats and smallsats - Discusses next generation technologies, up-coming advancements and future perspectives - Features the most relevant CubeSat launch initiatives from NASA, ESA, and from developing countries, along with an overview of the New Space CubeSat market
This book focuses on the advanced controller designs of flight vehicle maneuver and operation. Chapters explain advanced control mechanisms and algorithms for different controllers required in a flight vehicle system. The book topics such as air-disturbance fixed time controllers, algorithms for orbit and attitude computation, adaptive control modes, altitude stabilization, nonlinear vibration control, partial space elevator configuration, controls for formation flying and satellite cluster, respectively. Key features: 1) Includes an investigation of high-precision and high-stability control problems of flight vehicles 2) Multiple complex disturbances are considered to improve robust performance and control accuracy 3)Covers a variety of single spacecraft and distributed space systems (including hypersonic vehicles, flexible aircraft, rigid aircraft, and satellites This book will be helpful to aerospace scientists and engineers who are interested in working on the development of flight vehicle maneuver and operation. Researchers studying control science and engineering, and advanced undergraduate and graduate students and professionals involved in the flight vehicle control field will also benefit from the information given in this book.